Today: Sorting, continued
- Quicksort
- Selection
- Distribution counting
- Radix sorts

Next topic readings: Data Structures, Chapter 9.

Public Service Announcement: Residential Computing is hiring. Be an RCC and get paid for your computer skills. Flexible Hours, Work Study: $11.97/hour Past RCC's have gone on to places like Google, Apple, Microsoft and eBay. For more information visit:
http://rescomp.berkeley.edu/rcchiring.

Quicksort: Speed through Probability

Idea:
- Partition data into pieces: everything $>$ a pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are "small enough" and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its piece [why?], so when pieces are small, #inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.

Example of Quicksort

- In this example, we continue until pieces are size ≤ 4.
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

 16 10 13 18 4 -7 12 5 19 5 0 22 29 34
 4 -5 7 -1 18 13 12 10 19 5 0 22 29 34
 4 -5 7 15 13 2 10 0 16 13 22 29 34 18
 4 -5 7 -1 10 0 12 19 13 16 18 19 29 34

- Now everything is "close to" right, so just do insertion sort:

 7 5 4 -1 0 10 12 13 15 16 18 19 22 29 34

Performance of Quicksort

- Probabilistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \log N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \log N)$ in best case, so insertion sort better for nearly ordered input sets.
- Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!
Quick Selection

The Selection Problem: for given \(k\), find \(k\)th smallest element in data.

- Obvious method: sort, select element \(k\), time \(\Theta(N \lg N)\).
- If \(k \leq \) some constant, can easily do in \(\Theta(N)\) time:
 - Go through array, keep smallest \(k\) items.
- Get probably \(\Theta(N)\) time for all \(k\) by adapting quicksort:
 - Partition around some pivot, \(p\), as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index \(m\), all elements \(\leq\) pivot have indices \(\leq m\).
 - If \(m = k\), you're done: \(p\) is answer.
 - If \(m > k\), recursively select \(k\)th from left half of sequence.
 - If \(m < k\), recursively select \((k - m - 1)\)th from right half of sequence.

Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:

\[
\begin{array}{cccccccccccccccc}
51 & 60 & 21 & 43 & 49 & 10 & 0 & 59 & 0 & 13 & 2 & 39 & 11 & 46 & 31 & 0 \\
\end{array}
\]

Looking for #10 to left of pivot 40:

\[
\begin{array}{cccccccccccccccc}
13 & 31 & 21 & 43 & 49 & 10 & 0 & 59 & 2 & 0 & 40 & 59 & 51 & 49 & 66 & 0 \\
\end{array}
\]

Looking for #6 to right of pivot 4:

\[
\begin{array}{cccccccccccccccc}
-4 & 0 & 2 & 4 & 3 & 13 & 11 & 10 & 0 & 59 & 2 & 1 & 42 & 59 & 51 & 49 & 66 & 0 \\
\end{array}
\]

Looking for #1 to right of pivot 31:

\[
\begin{array}{cccccccccccccccc}
-4 & 0 & 2 & 4 & 21 & 13 & 11 & 10 & 31 & 37 & 40 & 59 & 51 & 49 & 66 & 0 \\
\end{array}
\]

Just two elements: just sort and return #1:

\[
\begin{array}{cccccccccccccccc}
-4 & 0 & 2 & 4 & 21 & 13 & 11 & 10 & 31 & 37 & 39 & 40 & 59 & 51 & 49 & 66 & 0 \\
\end{array}
\]

Result: 39

Selection Performance

- For this algorithm, if \(m\) roughly in middle each time, cost is
 \[
 C(N) = \begin{cases}
 1, & \text{if } N = 1, \\
 N + C(N/2), & \text{otherwise}.
 \end{cases}
 \]
 \[
 = N + N/2 + \ldots + 1 \\
 = 2N - 1 \in \Theta(N)
 \]
- But in worst case, get \(\Theta(N^2)\), as for quicksort.
- By another, non-obvious algorithm, can get \(\Theta(N)\) worst-case time for all \(k\) (take CS170).

Better than \(N \lg N\)?

- Can prove that if all you can do to keys is compare them then sorting must take \(\Omega(N \lg N)\).
- Basic idea: there are \(N!\) possible ways the input data could be scrambled.
- Therefore, your program must be prepared to do \(N!\) different combinations of move operations.
- Therefore, there must be \(N!\) possible combinations of outcomes of all the if tests in your program (we're assuming that comparisons are 2-way).
- Since each if test goes two ways, number of possible different outcomes for \(k\) if tests is \(2^k\).
- Thus, need enough tests so that \(2^k > N!\), which means \(k \in \Omega(\lg N!)\).
- Using Stirling's approximation,
 \[
 m! \in \sqrt{2\pi m} \left(\frac{m}{e}\right)^m \left(1 + \Theta\left(\frac{1}{m}\right)\right),
 \]
 this tells us that
 \(k \in \Omega(N \lg N)\).
Beyond Comparison: Distribution Counting

- But suppose can do more than compare keys?
- For example, how can we sort a set of \(N \) integer keys whose values range from 0 to \(kN \), for some small constant \(k \)?
- One technique: **count** the number of items < 1, < 2, etc.
- If \(M_p \) = #items with value < \(p \), then in sorted order, the \(j \)th item with value \(p \) must be \# \(M_p + j \).
- Gives **linear-time** algorithm.

Distribution Counting Example

- Suppose all items are between 0 and 9 as in this example:

 | 7 | 0 | 4 | 0 | 9 | 1 | 9 | 1 | 9 | 5 | 3 | 7 | 3 | 1 | 6 | 7 | 4 | 2 | 0 |

 |
 | 3 | 3 | 1 | 2 | 2 | 1 | 1 | 3 | 0 | 3 |
 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

 |
 | 0 | 3 | 6 | 7 | 9 | 11 | 12 | 13 | 16 | 16 |
 | < 0 | < 1 | < 2 | < 3 | < 4 | < 5 | < 6 | < 7 | < 8 | < 9 |

Counts

Running sum

Last modified: Wed Mar 22 17:16:35 2006

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

<table>
<thead>
<tr>
<th>A</th>
<th>posn</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ set, cat, cad, con, bat, can, be, let, bet</td>
<td>0</td>
</tr>
<tr>
<td>+ bat, be, bet / cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / * be, bet / cat, cad, con, can / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / * cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / be / bet / * cat, cad, con / con / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / cad / con / cat / con / let / set</td>
<td></td>
</tr>
</tbody>
</table>
Performance of Radix Sort

- Radix sort takes $\Theta(B)$ time where B is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
- So $N \lg N$ comparisons really means $N(\lg N)^2$ operations.
- While radix sort takes $B = N \lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.

And Don't Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$

Summary

- Insertion sort: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.

 - Good for small datasets or almost ordered data sets.
- Quicksort: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- Merge sort: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- Heapsort, treesort with guaranteed balance: $\Theta(N \lg N)$ guaranteed.
- Radix sort, distribution sort: $\Theta(B)$ (number of bytes). Also good for external sorting.