CS61B Lecture #36

Administrative:
- Last week’s homework due tonight at midnight.
- New problems (on sorting) added to this week’s homework Tuesday night. It’s due at the usual time.
- Slight update added to the rules in the on-line Project 3 handout. The game stops as soon as all squares become one player’s color; it’s not necessary to keep moving spots around after that.

Today’s Readings: Graph Structures: DSJ, Chapter 12

Why Graphs?
- For expressing non-hierarchically related items
- Examples:
 - Networks: pipelines, roads, assignment problems
 - Representing processes: flow charts, Markov models
 - Representing partial orderings: PERT charts, makefiles

Some Terminology
- A graph consists of
 - A set of nodes (aka vertices)
 - A set of edges: pairs of nodes.
 - Nodes with an edge between are adjacent.
 - Depending on problem, nodes or edges may have labels (or weights)
- Typically call node set $V = \{v_0, \ldots\}$, and edge set E.
- If the edges have an order (first, second), they are directed edges, and we have a directed graph (digraph), otherwise an undirected graph.
- Edges are incident to their nodes.
- Directed edges exit one node and enter the next.
- A cycle is a path without repeated edges leading from a node back to itself (following arrows if directed).
- A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Directed Acyclic Graph—DAG.

Some Pictures
- Directed

```
  Directed
        b
       /|
      / |\
     a  d
```

- Undirected

```
  Undirected
        b
    /   |   \
   a---d---e
```

- Acyclic:

```
  Acyclic: a
         /|
        / |\
       c  d
```

- Cyclic:

```
  Cyclic: a
         /|
        / |\
       b  d
```

- With Edge Labels:

```
  With Edge Labels: a
                  /|
                 / |\
                1 3  d
          ________________________
         |                        |
        c                       c
```
Trees are Graphs

- A graph is connected if there is a (possibly directed) path between every pair of nodes.
- That is, if one node of the pair is reachable from the other.
- A DAG is a (rooted) tree iff connected, and every node but the root has exactly one parent.
- A connected, acyclic, undirected graph is also called a free tree. Free: we're free to pick the root; e.g.,

```
 a -- b -- c
   |    |
   d -- e
```

Examples of Use

- Edge = Connecting road, with length.
 ![Road Diagram]

- Edge = Must be completed before; Node label = time to complete.
 ![Time Diagram]

- Edge = Begat
 ![Begat Diagram]

More Examples

- Edge = some relationship
 ![Relationship Diagram]

- Edge = next state might be (with probability)
 ![Probability Diagram]

- Edge = next state in state machine, label is triggering input. (Start at s. Being in state 4 means "there is a substring '001' somewhere in the input").
 ![State Machine Diagram]

Representation

- Often useful to number the nodes, and use the numbers in edges.
- Edge list representation: each node contains some kind of list (e.g., linked list or array) of its successors (and possibly predecessors).
 ![Edge List Diagram]

- Edge sets: Collection of all edges. For graph above:
 \{(1, 2), (1, 3), (2, 3)\}

- Adjacency matrix: Represent connection with matrix entry:
 \[
 \begin{pmatrix}
 0 & 1 & 0 \\
 1 & 0 & 1 \\
 0 & 0 & 0 \\
 \end{pmatrix}
 \]
Traversing a Graph

- Many algorithms on graphs depend on traversing all or some nodes.
- Can’t quite use recursion because of cycles.
- Even in acyclic graphs, can get combinatorial explosions:

\[
\begin{array}{cccccc}
1 & 4 & 7 & & & 2 \\
0 & 3 & 6 & 8 & \ldots & 3N
\end{array}
\]

Treat 0 as the root and do recursive traversal down the two edges out of each node: \(\Theta(2^N) \) operations!
- So typically try to visit each node constant # of times (e.g., once).

General Graph Traversal Algorithm

\[
\text{COLLECTION_OF_VERTICES}\ fringe;
\]

\[
\text{fringe = INITIAL_COLLECTION;}\ \\
\text{while (! fringe.isEmpty()) { \}
\]

\[
\text{Vertex v = fringe.REMOVE_HIGHEST_PRIORITY_ITEM(); \}
\]

\[
\text{if (! MARKED(v)) { \}
\]

\[
\text{MARK(v); \}
\]

\[
\text{VISIT(v); \}
\]

\[
\text{For each edge (v,w) { \}
\]

\[
\text{if (NEEDS_PROCESSING(w)) \}
\]

\[
\text{Add w to fringe; \}
\]

\[
\text{}\}
\]

Replace COLLECTION_OF_VERTICES, INITIAL_COLLECTION, etc. with various types, expressions, or methods to different graph algorithms.

Example: Depth-First Traversal

Problem: Visit every node reachable from \(v \) once, visiting nodes further from start first.

\[
\text{Stack<}\text{Vertex}>\ fringe;
\]

\[
\text{fringe = stack containing \{}v\}\};\ \\
\text{while (! fringe.isEmpty()) { \}
\]

\[
\text{Vertex v = fringe.pop (); \}
\]

\[
\text{if (! marked (v)) { \}
\]

\[
\text{mark (v); \}
\]

\[
\text{VISIT(v); \}
\]

\[
\text{For each edge (v,w) { \}
\]

\[
\text{if (! marked (w)) \}
\]

\[
\text{fringe.push (w); \}
\]

\[
\text{}\}
\]

Depth-First Traversal Illustrated

Marked: [a, b, c, d, e, f]

Fringe: [a, [b, d], [c, e, d], [d, f, e, d], [f, e, d], [e, e, d], [e, d], []]
Topological Sorting

Problem: Given a DAG, find a linear order of nodes consistent with the edges.
- That is, order the nodes \(v_0, v_1, \ldots\) such that \(v_k\) is never reachable from \(v_{k'}\) if \(k' > k\).
- Gmake does this. Also PERT charts.

```
Set<Vertex> fringe;
fringe = set of all nodes with no predecessors;
while (! fringe.isEmpty()) {
    Vertex v = fringe.removeOne();
    add v to end of result list;
    For each edge (v,w) {
        decrease predecessor count of w;
        if (predecessor count of w == 0)
            fringe.add (w);
    }
}
```

Topological Sort in Action

Output: \[
\]

Shortest Paths: Dijkstra's Algorithm

Problem: Given a graph (directed or undirected) with non-negative edge weights, compute shortest paths from given source node, \(s\), to all nodes.
- "Shortest" = sum of weights along path is smallest.
- For each node, keep estimated distance from \(s\), \ldots
- \ldots and of preceding node in shortest path from \(s\).

PriorityQueue<Vertex> fringe;
for each node \(v\) {
 v.dist() = \(\infty\); v.back() = null; }

s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
 Vertex v = fringe.removeFirst();
 For each edge (v,w) {
 if (v.dist() + weight(v,w) < w.dist())
 { w.dist() = v.dist() + weight(v,w); w.back() = v; }
 }
}