Minimum Spanning Trees

Problem: Given a set of places and distances between them (assume always positive), find a set of connecting roads of minimum total length that allows travel between any two.

The routes you get will not necessarily be shortest paths.

Easy to see that such a set of connecting roads and places must form a tree, because removing one road in a cycle still allows all to be reached.

Minimum Spanning Trees by Prim’s Algorithm

Idea is to grow a tree starting from an arbitrary node.

At each step, add the shortest edge connecting some node already in the tree to one that isn’t yet.

Why must this work?

PriorityQueue fringe;
For each node v { v.dist() = ∞; v.parent() = null; }
Choose an arbitrary starting node, s;
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
 Vertex v = fringe.removeFirst();
 for each edge (v,w) {
 if (w ∈ fringe && weight(v,w) < w.dist()) {
 w.dist() = weight (v, w); w.parent() = v;
 }
 }
}

Minimum Spanning Trees by Kruskal’s Algorithm

Observation: the shortest edge in a graph can always be part of a minimum spanning tree.

In fact, if we have a bunch of subtrees of a MST, then the shortest edge that connects two of them can be part of a MST, combining the two subtrees into a bigger one.

So,...

Create one (trivial) subtree for each node in the graph;
MST = {};
for each edge (v,w), in increasing order of weight {
 if ((v,w) connects two different subtrees) {
 Add (v,w) to MST;
 Combine the two subtrees into one;
 }
}

Recursive Depth-First Traversal

Previously, we saw an iterative way to do depth-first traversal of a graph from a particular node.

We are often interested in traversing all nodes of a graph, so we can repeat the procedure as long as there are unmarked nodes.

Recursive solution is also simple:

void traverse (Graph G) {
 for (v ∈ nodes of G) {
 traverse (G, v);
 }
}

void traverse (Graph G, Node v) {
 if (v is unmarked) {
 mark (v);
 visit v;
 for (Edge (v, w) ∈ G)
 traverse (G, w);
 }
}
Another Take on Topological Sort

- Observation: if we do a depth-first traversal on a DAG whose edges are reversed, and execute the recursive traverse procedure, we finish executing traverse(G,v) in proper topologically sorted order.

```java
void topologicalSort (Graph G) {
    for (v ∈ nodes of G) {
        traverse (G, v);
    }
}

void traverse (Graph G, Node v) {
    if (v is unmarked) {
        mark (v);
        for (Edge (w, v) ∈ G)
            traverse (G, w);
        add v to the result list;
    }
}
```

Union Find

- Kruskal’s algorithm required that we have a set of sets of nodes with two operations:
 - Find which of the sets a given node belongs to.
 - Replace two sets with their union, reassigning all the nodes in the two original sets to this union.
- Obvious thing to do is to store a set number in each node, making finds fast.
- Union requires changing the set number in one of the two sets being merged; the smaller is better choice.
- This means an individual union can take Θ(N) time.
- Can union be fast?

A Clever Trick

- Let’s choose to represent a set of nodes by one arbitrary representative node in that set.
- Let every node contain a pointer to another node in the same set.
- Arrange for each pointer to represent the parent of a node in a tree that has the representative node as its root.
- To find what set a node is in, follow parent pointers.
- To union two such trees, make one root point to the other (choose the root of the higher tree as the union representative).

Path Compression

- This makes unioning really fast, but the find operation potentially slow (Ω(lg N)).
- So use the following trick: whenever we do a find operation, compress the path to the root, so that subsequent finds will be faster.
- That is, make each of the nodes in the path point directly to the root.
- Now union is very fast, and sequence of unions and finds each have very, very nearly constant amortized time.
- Example: find ‘g’ in last tree (result of compression on right):