Topics

• Overview of standard Java Collections classes.
 - Iterators, ListIterators
 - Containers and maps in the abstract

• Amortized analysis of implementing lists with arrays.
Data Types in the Abstract

- Most of the time, should *not* worry about implementation of data structures, search, etc.
- What they do for us—their specification—is important.
- Java has several standard types (in java.util) to represent collections of objects
 - Six interfaces:
 * Collection: General collections of items.
 * List: Indexed sequences with duplication
 * Set, SortedSet: Collections without duplication
 * Map, SortedMap: Dictionaries (key \mapsto value)
 - Concrete classes that provide actual instances: LinkedList, ArrayList, HashSet, TreeSet.
 - To make change easier, purists would use the concrete types only for `new`, interfaces for parameter types, local variables.
Collection Structures in java.util

- Collection
 - List
 - LinkedList
 - ArrayList
 - Vector
 - Set
 - HashSet
 - TreeSet
 - Map
 - HashMap
 - WeakHashMap
 - TreeMap

Key:
- interface
- class
- : extends
- : implements
The Collection Interface

- Collection interface. Main functions promised:
 - Membership tests: contains (\in), containsAll (\subseteq)
 - Other queries: size, isEmpty
 - Retrieval: iterator, toArray
 - Optional modifiers: add, addAll, clear, remove, removeAll (set difference), retainAll (intersect)
Side Trip about Library Design: Optional Operations

- Not all Collections need to be modifiable; often makes sense just to get things from them.

- So some operations are optional (add, addAll, clear, remove, removeAll, retainAll)

- The library developers decided to have all Collections implement these, but allowed implementations to throw an exception:

  ```java
  UnsupportedOperationException
  ```

- An alternative design would have created separate interfaces:

  ```java
  interface Collection { contains, containsAll, size, iterator, ... }
  interface Expandable extends Collection { add, addAll }  
  interface Shrinkable extends Collection { remove, removeAll, ... }  
  interface ModifiableCollection  
      extends Collection, Expandable, Shrinkable { }
  ```

- You’d soon have lots of interfaces. Perhaps that’s why they didn’t do it that way.
The List Interface

- Extends Collection
- Intended to represent *indexed sequences* (generalized arrays)
- Adds new methods to those of Collection:
 - Membership tests: indexOf, lastIndexOf.
 - Retrieval: get(i), listIterator(), sublist(B, E).
 - Modifiers: add and addAll with additional index to say *where* to add. Likewise for removal operations. set operation to go with get.
- Type ListIterator<Item> extends Iterator<Item>:
 - Adds previous and hasPrevious.
 - add, remove, and set allow one to iterate through a list, inserting, removing, or changing as you go.
 - Important Question: What advantage is there to saying List L rather than LinkedList L or ArrayList L?
Implementing Lists (I): ArrayLists

• The main concrete types in Java library for interface List are ArrayList and LinkedList:

• As you might expect, an ArrayList, A, uses an array to hold data. For example, a list containing the three items 1, 4, and 9 might be represented like this:

A:

- data:
 1 4 9
- count: 3

After adding four more items to A, its data array will be full, and the value of data will have to be replaced with a pointer to a new, bigger array that starts with a copy of its previous values.

• Question: For best performance, how big should this new array be?

• If we increase the size by 1 each time it gets full (or by any constant value), the cost of N additions will scale as $\Theta(N^2)$, which makes ArrayList look much worse than LinkedList (which uses an IntList-like implementation.)
Expanding Vectors Efficiently

• When using array for expanding sequence, best to \textit{double} the size of array to grow it. Here’s why.

• If array is size s, doubling its size and moving s elements to the new array takes time proportional to $2s$.

• In all cases, there is an additional $\Theta(1)$ cost for each addition to account for actually assigning the new value into the array.

• When you add up these costs for inserting a sequence of N items, the \textit{total} cost turns out to be proportional to N, as if each addition took constant time, even though some of the additions actually take time proportional to N all by themselves!
Amortized Time

• Suppose that the actual costs of a sequence of N operations are $c_0, c_1, \ldots, c_{N-1}$, which may differ from each other by arbitrary amounts and where $c_i \in O(f(i))$.

• Consider another sequence $a_0, a_1, \ldots, a_{N-1}$, where $a_i \in O(g(i))$.

• If

\[
\sum_{0 \leq i < k} a_i \geq \sum_{0 \leq i < k} c_i \text{ for all } k,
\]

we say that the operations all run in $O(g(i))$ amortized time.

• That is, the actual cost of a given operation, c_i, may be arbitrarily larger than the amortized time, a_i, as long as the total amortized time is always greater than or equal to the total actual time, no matter where the sequence of operations stops—i.e., no matter what k is.

• In cases of interest, the amortized time bounds are much less than the actual individual time bounds: $g(i) \ll f(i)$.

• E.g., for the case of insertion with array doubling, $f(i) \in O(N)$ and $g(i) \in O(1)$.
Amortization: Expanding Vectors (II)

<table>
<thead>
<tr>
<th>Item #</th>
<th>Resizing Cost</th>
<th>Cumulative Cost</th>
<th>Resizing Cost per Item</th>
<th>Array Size After Insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>14</td>
<td>2.8</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>14</td>
<td>2.33</td>
<td>8</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>30</td>
<td>3.33</td>
<td>16</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>30</td>
<td>1.88</td>
<td>16</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[
2^m + 1 \text{ to } 2^{m+1} - 1 \quad 0 \quad 2^{m+2} - 2 \quad \approx 2 \quad 2^{m+1} \\
2^{m+1} \quad 2^{m+2} \quad 2^{m+3} - 2 \quad \approx 4 \quad 2^{m+2}
\]

- If we spread out (amortize) the cost of resizing, we average at most about 4 time units for resizing on each item: “amortized resizing time is 4 units.” Time to add \(N \) elements is \(\Theta(N) \), not \(\Theta(N^2) \).
Demonstrating Amortized Time: Potential Method

- To formalize the argument, associate a potential, $\Phi_i \geq 0$, to the i^{th} operation that keeps track of “saved up” time from cheap operations that we can “spend” on later expensive ones. Start with $\Phi_0 = 0$.

- Now we pretend that the cost of the i^{th} operation is actually a_i, the amortized cost, defined

\[
a_i = c_i + \Phi_{i+1} - \Phi_i,
\]

where c_i is the real cost of the operation. Or, looking at potential:

\[
\Phi_{i+1} = \Phi_i + (a_i - c_i)
\]

- On cheap operations, we artificially set $a_i > c_i$ so that we can increase Φ ($\Phi_{i+1} > \Phi_i$).

- On expensive ones, we typically have $a_i \ll c_i$ and greatly decrease Φ (but don’t let it go negative—may not be “overdrawn”).

- We try to do all this so that a_i remains as we desired (e.g., $O(1)$ for expanding array), without allowing $\Phi_i < 0$.

- Requires that we choose a_i so that Φ_i always stays ahead of c_i.
Application to Expanding Arrays

- When adding to our array, the cost, c_i, of adding element #i when
 the array already has space for it is 1 unit.

- The array does not initially have space when adding items 1, 2, 4, 8, 16,...—in other words at item 2^n for all $n \geq 0$. So,
 - $c_i = 1$ if $i \geq 0$ and is not a power of 2; and
 - $c_i = 2i + 1$ when i is a power of 2 (copy i items, clear another i items, and then add item #i).

- So on each operation #2^n we’re going to need to have saved up at least $2 \cdot 2^n = 2^{n+1}$ units of potential to cover the expense of expanding the array, and we have this operation and the preceding $2^{n-1} - 1$ operations in which to save up this much potential (everything since the preceding doubling operation).

- So choose $a_0 = 1$ and $a_i = 5$ for $i > 0$. Apply $\Phi_{i+1} = \Phi_i + (a_i - c_i)$, and here is what happens:

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_i</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a_i</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Φ_i</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>2</td>
</tr>
</tbody>
</table>

Pretending each cost is 5 never underestimates true cumulative time.