Today:

- Selection sorts, heap sort
- Merge sorts
- Quicksort

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.
Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

• Really bad idea on a simple list or vector.
• But we’ve already seen it in action: use heap.
• Gives $O(N \lg N)$ algorithm (N remove-first operations).
• Since we remove items from end of heap, we can use that area to accumulate result:

| original: 19 0 -1 7 23 2 42 |
| heapified: 42 23 19 7 0 2 -1 |

| Heap part |
| Sorted part |
Sorting By Selection: Initial Heapifying

• When covering heaps before, we created them by insertion in an initially empty heap.

• When given an array of unheaped data to start with, there is a faster procedure (assume heap indexed from 0):

```java
void heapify(int[] arr) {
    int N = arr.length;
    for (int k = N / 2; k >= 0; k -= 1) {
        for (int p = k, c = 0; 2*p + 1 < N; p = c) {
            c = 2k+1 or 2k+2, whichever is < N
            and indexes larger value in arr;
            swap elements c and k of arr;
        }
    }
}
```

• Looks like the procedure for re-inserting an element after the top element of the heap is removed, repeated \(N/2 \) times.

• But instead of being \(\Theta(N \lg N) \), it’s just \(\Theta(N) \).
Cost of Creating Heap

- In general, worst-case cost for a heap with \(h + 1 \) levels is

\[
2^0 \cdot h + 2^1 \cdot (h - 1) + \ldots + 2^{h-1} \cdot 1
\]

\[
= (2^0 + 2^1 + \ldots + 2^{h-1}) + (2^0 + 2^1 + \ldots + 2^{h-2}) + \ldots + (2^0)
\]

\[
= (2^h - 1) + (2^{h-1} - 1) + \ldots + (2^1 - 1)
\]

\[
= 2^{h+1} - 1 - h
\]

\[
\in \Theta(2^h) = \Theta(N)
\]

- Alas, since the rest of heapsort still takes \(\Theta(N \lg N) \), this does not improve its asymptotic cost.
Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- Already seen analysis: $\Theta(N \lg N)$.
- Good for *external sorting*:
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
- Can merge K sequences of *arbitrary size* on secondary storage using $\Theta(K)$ storage:

  ```java
  Data[] V = new Data[K];
  For all i, set V[i] to the first data item of sequence i;
  while there is data left to sort:
      Find k so that V[k] is smallest;
      Output V[k], and read new value into V[k] (if present).
  ```
Illustration of Internal Merge Sort

For internal sorting, can use a binomial comb to orchestrate:

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

0 elements processed

0: 0
1: 0
2: 0
3: 0

1 element processed

0: 1
1: 0
2: 0
3: 0

2 elements processed

0: 0
1: 1
2: 0
3: 0

3 elements processed

0: 0
1: 1
2: 0
3: 0

4 elements processed

0: 0
1: 1
2: 1
3: 0

6 elements processed

0: 0
1: 1
2: 1
3: 0

11 elements processed

0: 1
1: 1
2: 1
3: 1

-1, 0, 3, 5, 6, 9, 10, 15

Last modified: Tue Jan 21 15:10:37 2020
Quicksort: Speed through Probability

Idea:

- *Partition* data into pieces: everything $> a$ *pivot* value at the high end of the sequence to be sorted, and everything \leq on the low end.

- Repeat recursively on the high and low pieces.

- For speed, stop when pieces are “small enough” and do insertion sort on the whole thing.

- Reason: insertion sort has low constant factors. By design, no item will move out of its piece [why?], so when pieces are small, #inversions is, too.

- Have to choose pivot well. E.g.: *median* of first, last and middle items of sequence.
Example of Quicksort

- In this example, we continue until pieces are size ≤ 4.
- Pivots for next step are starred. Arrange to move pivot to dividing line each time.
- Last step is insertion sort.

```
16 10 13 18 -4 -7 12 -5 19 15 0 22 29 34 -1*
```

```
-4 -5 -7 -1 18 13 12 10 19 15 0 22 29 34 16*
```

```
-4 -5 -7 -1 15 13 12* 10 0 16 19* 22 29 34 18
```

```
-4 -5 -7 -1 10 0 12 15 13 16 18 19 29 34 22
```

- Now everything is “close to” right, so just do insertion sort:

```
-7 -5 -4 -1 0 10 12 13 15 16 18 19 22 29 34
```
Performance of Quicksort

• Probabilistic time:
 - If choice of pivots good, divide data in two each time: \(\Theta(N \lg N) \) with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: \(\Theta(N^2) \).
 - \(\Omega(N \lg N) \) in best case, so insertion sort better for nearly ordered input sets.

• Interesting point: randomly shuffling the data before sorting makes \(\Omega(N^2) \) time very unlikely!
Quick Selection

The Selection Problem: for given k, find k^{th} smallest element in data.

- Obvious method: sort, select element $\#k$, time $\Theta(N \lg N)$.
- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
 - If $m = k$, you’re done: p is answer.
 - If $m > k$, recursively select k^{th} from left half of sequence.
 - If $m < k$, recursively select $(k - m - 1)^{th}$ from right half of sequence.
Selection Example

Problem: Find just item #10 in the sorted version of array:

<table>
<thead>
<tr>
<th>Initial contents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 60 21 -4 37 4 49 10 40* 59 0 13 2 39 11 46 31</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Looking for #10 to left of pivot 40:

| 13 31 21 -4 37 4* 11 10 39 2 0 | 40 | 59 51 49 46 60 |
| 0 |

Looking for #6 to right of pivot 4:

| -4 0 2 | 4 | 37 13 11 10 39 21 31* | 40 | 59 51 49 46 60 |
| 4 |

Looking for #1 to right of pivot 31:

| -4 0 2 | 4 | 21 13 11 10 | 31 | 39 37 | 40 | 59 51 49 46 60 |
| 9 |

Just two elements: just sort and return #1:

| -4 0 2 | 4 | 21 13 11 10 | 31 | 37 39 | 40 | 59 51 49 46 60 |
| 9 |

Result: 39
Selection Performance

- For this algorithm, if m roughly in middle each time, cost is

$$C(N) = \begin{cases}
1, & \text{if } N = 1, \\
N + C(N/2), & \text{otherwise.}
\end{cases}$$

$$= N + N/2 + \ldots + 1$$

$$= 2N - 1 \in \Theta(N)$$

- But in worst case, get $\Theta(N^2)$, as for quicksort.

- By another, non-obvious algorithm, can get $\Theta(N)$ worst-case time for all k (take CS170).