Today:

- Pseudo-random Numbers (Chapter 11)
- What use are random sequences?
- What *are* “random sequences”?
- Pseudo-random sequences.
- How to get one.
- Relevant Java library classes and methods.
- Random permutations.
Why Random Sequences?

- Choose statistical samples
- Simulations
- Random algorithms
- Cryptography:
 - Choosing random keys
 - Generating streams of random bits (e.g., stream ciphers encrypt messages by xor'ing reproducible streams of pseudo-random bits with the bits of the message.)
- And, of course, games
What Is a “Random Sequence”?

- How about: “a sequence where all numbers occur with equal frequency”?
 - Like 1, 2, 3, 4, …?

- Well then, how about: “an unpredictable sequence where all numbers occur with equal frequency?”
 - Like 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 4, 0, 1, 1, 1,…?

- Besides, what is wrong with 0, 0, 0, 0, … anyway? Can’t that occur by random selection?
Pseudo-Random Sequences

• Even if definable, a “truly” random sequence is difficult for a computer (or human) to produce.

• For most purposes, need only a sequence that satisfies certain statistical properties, even if deterministic.

• Sometimes (e.g., cryptography) need sequence that is hard or impractical to predict.

• Pseudo-random sequence: deterministic sequence that passes some given set of statistical tests.

• For example, look at lengths of runs: increasing or decreasing contiguous subsequences.

• Unfortunately, statistical criteria to be used are quite involved. For details, see Knuth.
Generating Pseudo-Random Sequences

- Not as easy as you might think.
- Seemingly complex jumbling methods can give rise to bad sequences.
- Linear congruential method is a simple method used by Java:
 \[
 X_0 = \text{arbitrary seed} \\
 X_i = (aX_{i-1} + c) \mod m, \quad i > 0
 \]
- Usually, \(m\) is large power of 2.
- For best results, want \(a \equiv 5 \mod 8\), and \(a, c, m\) with no common factors.
- This gives generator with a period of \(m\) (length of sequence before repetition), and reasonable potency (measures certain dependencies among adjacent \(X_i\).)
- Also want bits of \(a\) to “have no obvious pattern” and pass certain other tests (see Knuth).
- Java uses \(a = 25214903917\), \(c = 11\), \(m = 2^{48}\), to compute 48-bit pseudo-random numbers. It’s good enough for many purposes, but not cryptographically secure.
What Can Go Wrong (I)?

- Short periods, many impossible values: E.g., a, c, m even.
- Obvious patterns. E.g., just using lower 3 bits of X_i in Java’s 48-bit generator, to get integers in range 0 to 7. By properties of modular arithmetic,

\[
X_i \mod 8 = (25214903917X_{i-1} + 11 \mod 2^{48}) \mod 8
= (5(X_{i-1} \mod 8) + 3) \mod 8
\]

so we have a period of 8 on this generator; sequences like

\[
0, 1, 3, 7, 1, 2, 7, 1, 4, \ldots
\]

are impossible. This is why Java doesn’t give you the raw 48 bits.
What Can Go Wrong (II)?

Bad potency leads to bad correlations.

- The infamous IBM generator RANDU: \(c = 0, a = 65539, m = 2^{31} \).
- When RANDU is used to make 3D points: \((X_i/S, X_{i+1}/S, X_{i+2}/S)\), where \(S\) scales to a unit cube, . . .
- . . . points will be arranged in parallel planes with voids between. So “random points” won’t ever get near many points in the cube:

![Diagram](https://commons.wikimedia.org/wiki/w/index.php?curid=3832343)
Additive Generators

• Additive generator:

\[
X_n = \begin{cases}
\text{arbitrary value,} & n < 55 \\
(X_{n-24} + X_{n-55}) \mod 2^e, & n \geq 55
\end{cases}
\]

• Other choices than 24 and 55 possible.

• This one has period of \(2^f(2^{55} - 1)\), for some \(f < e\).

• Simple implementation with circular buffer:

```c
i = (i+1) % 55;
X[i] += X[(i+31) % 55];  // Why +31 (55-24) instead of -24?
return X[i];  /* modulo 2^{32} */
```

• where \(X[0 \ldots 54]\) is initialized to some “random” initial seed values.
Cryptographic Pseudo-Random Number Generators

• The simple form of linear congruential generators means that one can predict future values after seeing relatively few outputs.

• Not good if you want unpredictable output (think on-line games involving money or randomly generated keys for encrypting your web traffic.)

• A cryptographic pseudo-random number generator (CPRNG) has the properties that
 - Given \(k \) bits of a sequence, no polynomial-time algorithm can guess the next bit with better than 50% accuracy.
 - Given the current state of the generator, it is also infeasible to reconstruct the bits it generated in getting to that state.
Cryptographic Pseudo-Random Number Generator Example

- Start with a good block cipher—an encryption algorithm that encrypts blocks of \(N \) bits (not just one byte at a time as for Enigma). AES is an example.
- As a seed, provide a key, \(K \), and an initialization value \(I \).
- The \(j^{th} \) pseudo-random number is now \(E(K, I + j) \), where \(E(x, y) \) is the encryption of message \(y \) using key \(x \).
Adjusting Range and Distribution

• Given raw sequence of numbers, X_i, from above methods in range (e.g.) 0 to 2^{48}, how to get uniform random integers in range 0 to $n - 1$?

• If $n = 2^k$, is easy: use top k bits of next X_i (bottom k bits not as “random”)

• For other n, be careful of slight biases at the ends. For example, if we compute $X_i / (2^{48}/n)$ using all integer division, and if $(2^{48}/n)$ gets rounded down, then you can get n as a result (which you don’t want).

• If you try to fix that by computing $(2^{48} / (n - 1))$ instead, the probability of getting $n - 1$ will be wrong.
Adjusting Range (II)

- To fix the bias problems when n does not evenly divide 2^{48}, Java throws out values after the largest multiple of n that is less than 2^{48}:

```java
/** Random integer in the range 0 .. n-1, n>0. */
int nextInt(int n) {
    long X = next random long (0 ≤ X < 2^{48});
    if (n is $2^k$ for some $k$)
        return top $k$ bits of $X$;

    int MAX = largest multiple of $n$ that is < $2^{48}$;
    while (X$_i$ >= MAX)
        X = next random long (0 ≤ X < $2^{48}$);
    return X$_i$ / (MAX/n);
}
```
Arbitrary Bounds

• How to get arbitrary range of integers (L to U)?

• To get random float, x in range $0 \leq x < d$, compute

 \[
 \text{return } d\times\text{nextInt}(1\ll24) / (1\ll24);
 \]

• Random double a bit more complicated: need two integers to get enough bits.

 \[
 \text{long bigRand} = ((\text{long})\ \text{nextInt}(1\ll26) \ll 27) + (\text{long})\ \text{nextInt}(1\ll27);
 \]
 \[
 \text{return } d \times \text{bigRand} / (1\times 2^{53});
 \]
Generalizing: Other Distributions

• Suppose we have some desired probability distribution function, and want to get random numbers that are distributed according to that distribution. How can we do this?

• Example: the normal distribution:

\[P(Y \leq X) \]

-2 -1 0 1 2

\(X \)

• Curve is the desired probability distribution. \(P(Y \leq X) \) is the probability that random variable \(Y \) is \(\leq X \).
Other Distributions

Solution: Choose y uniformly between 0 and 1, and the corresponding x will be distributed according to P.

\[P(X \leq Y) \]
Java Classes

- **Math.random()**: random double in $[0..1)$.

- **Class java.util.Random**: a random number generator with constructors:
 - `Random()` generator with “random” seed (based on time).
 - `Random(seed)` generator with given starting value (reproducible).

- **Methods**
 - `next(k)` k-bit random integer
 - `nextInt(n)` int in range $[0..n)$.
 - `nextLong()` random 64-bit integer.
 - `nextBoolean()`, `nextFloat()`, `nextDouble()` Next random values of other primitive types.
 - `nextGaussian()` normal distribution with mean 0 and standard deviation 1 (“bell curve”).

- **Collections.shuffle(L, R)** for list R and Random R permutes L randomly (using R).
Shuffling

- A *shuffle* is a random permutation of some sequence.
- Obvious dumb technique for sorting N-element list:
 - Generate N random numbers
 - Attach each to one of the list elements
 - Sort the list using random numbers as keys.
- Can do quite a bit better:

```java
void shuffle(List L, Random R) {
    for (int i = L.size(); i > 0; i -= 1)
        swap element i-1 of L with element R.nextInt(i) of L;
}
```

- Example:

<table>
<thead>
<tr>
<th>Swap items</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>A♣</td>
<td>2♣</td>
<td>3♣</td>
<td>A♥</td>
<td>2♥</td>
<td>3♥</td>
</tr>
<tr>
<td>5 ⇛ 1</td>
<td>A♣</td>
<td>3♥</td>
<td>3♣</td>
<td>A♥</td>
<td>2♥</td>
<td>2♣</td>
</tr>
<tr>
<td>4 ⇛ 2</td>
<td>A♣</td>
<td>3♥</td>
<td>2♥</td>
<td>A♥</td>
<td>3♣</td>
<td>2♣</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Swap items</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A♣</td>
<td>3♥</td>
<td>2♥</td>
<td>A♥</td>
<td>3♣</td>
<td>2♣</td>
</tr>
</tbody>
</table>
Random Selection

• Same technique would allow us to select N items from list:

```java
/** Permute L and return sublist of K>=0 randomly
 * chosen elements of L, using R as random source. */
List select(List L, int k, Random R) {
    for (int i = L.size(); i+k > L.size(); i -= 1)
        swap element i-1 of L with element
            R.nextInt(i) of L;
    return L.sublist(L.size()-k, L.size());
}
```

• Not terribly efficient for selecting random sequence of K distinct integers from $[0..N)$, with $K \ll N$.
/** Random sequence of K distinct integers
 * from 0..N-1, 0<=K<=N. */

IntList selectInts(int N, int K, Random R)
{
 IntList S = new IntList();

 for (int i = N-K; i < N; i += 1) {
 // All values in S are < i
 int s = R.randInt(i+1); // 0 <= s <= i < N
 if (s == S.get(j) for some j)
 // Insert value i (which can’t be there
 // yet) after the s (i.e., at a random
 // place other than the front)
 S.add(j+1, i);
 else
 // Insert random value s at front
 S.add(0, s);
 }

 return S;
}