CS 61B - Summer 2005 - (Porter)
Final Exam Part 1 - Aug 10, 2005

Do not open until told to begin

This exam is CLOSED BOOK, but you may use 2 letter-sized page of notes that you have
created.

Problem 0: (1 point) Please fill out this information, and when told to begin, please put your
name on each page of the exam.

Your name: SOLUTION

Your ¢s61b login:

Lab time:

Lab TA’s name:

Name of person to your left:

Name of person to your right:

Do not write below here:

Problem Score Total possible
0 1 1
1 (10 minutes) 9 9
2 (10 minutes) 15 15
3 (40 minutes) 50 50
4 (20 minutes) 25 25
Total: 100 100

Do not open until told to begin

Good Luck!



Name: 2/7

Problem 1 (9 pts) — Java / Programming Methodology — (10 minutes)

What is the purpose of interfaces in Java? Why are they beneficial, and what problem do
they solve?

Interfaces allow programmers to separate the specification of a data structure from its
implementation. This is beneficial because programmers can modify a data structure’s
implementation to improve reliability, fix bugs, improve performance, etc., without
disrupting the rest of the program.

What is polymorphism? Give a small example.

A method/function is polymorphic when it can be applied to a variety of different data
types. For example, printList() can be applied to LinkedLists, SortedLinkedLists, ArrayLists,
SortedArraylists, etc.,

What is the error in the following code segment that prevents it from compiling?

public interface MyInterface {
public int A();
public int B();

}

public class MyClass implements MyInterface {
public int A() { return 3; }
public int B() { return 5; }

public static void printVal (int wval) {
System.out.println(val);

}

public static void main (String[] args) {
MyInterface obj = new MyClass();
obj.printVal( obj.A() + obj.B() )
}

printVal cannot be applied to obj since Myinterface doesn’t contain its signature.



Name: 3/7

Problem 2 (15 pts) — Algorithm Analysis — (10 minutes)

Given T(N) = 3N? + 2N, prove or disprove the statement T(N) is O( N°). Make use of the
definition of Big-Oh.

T(N) is O(N”2) if and only if there exist constants ¢ and NO such that

3NA2 + 2N <= cN”2 for N > NO
subtract cNA2 from each side
(B-c)N2 +2N <=0

factor out N
N(@Bc)N+2)<=0

N is positive for large values of N, so we have to show that ( (3-c)N + 2) <= 0 for large
N. Choose c =4. We get

-N + 2 <= 0 for large n. Setting NO to 3 satisfies this.

c=4,NO=3.



Name: 4 /7
Problem 3 (50 pts) — Employment Database — (40 minutes)

A company wishes to keep a record of all of its employees. For now, an employee is
represented by an object of the following class:

public class Employee {
public String name;
public int yearsAtCompany;
public float salary;

public Employee (String name, int years, float salary) {
this.name = name; this.yearsAtCompany = years; this.salary = salary;
}
}

A) Devise a data structure that efficiently supports the printinOrderOfSeniority() method.
This method prints out employees in order of how long they have worked at the company
(those who have been at the company the longest are printed first, those who have been at
the company the least are printed last). If two employees have worked at the company the
same number of years then they are printed alphabetically (according to String’s compareTo
method). Describe your data structure in detail, and give the instance variables (and their
types) it will contain.

Best solution (that | know of) 1: O(N)

Assume max age of a person is 120 years. Create a hashtable with 120 bins. Hash
each Employee to the bin corresponding to their seniority level. Keep each linked list
sorted.

Good solution 2: O(N log N)

Keep an unsorted linked list of Employee objects. To access the employee objects,
copy them into an array, sort with merge sort or quicksort (using yearsAtCompany as the
sort key).

Good solution 3: O(N log N)
Keep a priority queue (backed by a binary heap) of Employee objects. Use

yearsAtCompany as the priority if using a max heap. If using a min heap, use (120-
yearsAtCompany) as the priority.



Name: 5/7

B) Write an insert method for your data structure. If the employee is already in the data
structure you should return false, else return true. Your method should have the following
signature:

public boolean addEmployee(Employee e) { ... }

Soln 1: hash the seniority, add the object to the appropriate linked list

Soln 2: tack the employee record onto the linked list

Soln 3: use the insert method of the priority queue

C) What is addEmployee()’s running time? Briefly describe your answer.
Soln 1: O(1)
Soln 2: O(1)

Soln 3: O(log N)



Name: 6/7

D) Write a method called giveRaise() that increases each employee’s salary according to the
following system: The most senior 30% should get a 10% raise, and everyone else should
get a 5% raise. If multiple employees with the same seniority fall across the 30% line, then
give those employees the raise too. The signature should be:

public void giveRaise() { ... }

Soln 1: Create an array; foreach chain in the hash table, copy into the array; sort the array
with mergesort or quicksort. Create an iterator for the list with three fields: a “currentRaise”
field that is a float, and a “thirtyPercentLine” field that is an int, and a currentSeniority field
that is an int. Set thirtyPercentLine to be the number of employees times 0.3. Set
currentRaise to be 1.10. Traverse the list multiplying each employees salary by
currentRaise. When you have given thirtyPercentLine employees the 10% raise, set
currentSeniority to the value of seniority of the record your iterator points to. If there are
more employees with that seniority level, give them the 10% raise. When you find an
employee with a lower seniority, then set currentRaise to 1.05 and finish off the rest of the
list.

Soln 2: Copy the linked list into an array and proceed as described in soln 1.

Soln 3: Sort the binary heap (which is already stored as an array). Proceed as soln 1.

E) What is the running time for giveRaise()? Briefly describe your answer
Soln 1: O(N) to build the array. O(N log N) to sort it. O(N) to traverse. Thus O(N log N)
Soln 2: same

Soln 3: O(N log N) to sort, O(N) to traverse, thus O( N log N )



Name: 717

Problem 4 (25 pts) — Hash Tables — (20 minutes)

In this problem, you compare two structures for storing a list of 25,000 words. All the
guestions for this problem ask for behavior “on the average”; for the purpose of this
problem, you should assume that all the words will be accessed equally often.

Consider a hash table with n cells, each of which contains a pointer to an unsorted linked
list of words that hash to that cell. Suppose 25,000 words are to be added to the hash
structure, and the hash function is good enough to distribute them evenly throughout the
table (that is, all the n lists contain the same number of words).

How many comparisons, on the average, are needed to access a word in the hash structure?
Give your answer in terms of n, and show how you got it. The formula

1+2+3+...+k—1+k=@

will be useful. For the purposes of the computation, assume that n evenly divides 25,000.

Each chain in the hash table will be 25000 / N items long. Set k to be 25000 / N.

The average time to find an item in a k-length listis (1 + 2 + 3 + ... + k) / k. Given the
formula above, that is (k(k+1)) / 2k = (k+1) / 2. Substitute 25000 / N for k.



