
CS 61B – Summer 2005

Final exam review

Java

data hiding, encapsulation, interfaces, modularity, packages
subclassing – why? how?
exceptions and subclassing – how does it make programs better?
iterator pattern
polymorphism – code that supports future growth
algorithm analysis

why?
Prove or disprove:

T(N) = 3N + 12 is O(1)
T(N) = 3N + 12 is O(N)

Lists

linked data structures, running times (sorted, unsorted)
binary search. # comparisons it takes
Sorting

algorithms:
insert
shell
quick
merge
heap

using data structures (insert N times to sorted linked list, then call
dequeue() N times)
Stacks and Queues

implementation, representation
S & Q and trees – BFS, DFS
Hash Tables

Overview of how they work. Avg bucket chain length—how to calculate.
How does this affect running time? Relationship to lambda
Trees & Traversals

In-order, pre-order, post-order, level-order.
BST property. How to maintain despite insertions and removals?
Balanced trees – AVL trees
What is AVL property? Why is it good? How to maintain despite
insertions? (Only handle case where one node is out of balance)
P Queues, Binary Heaps

Show that find operations in heaps take O(log N) time since it is a
complete tree
The heap property. How to maintain despite insertions and deletions?
Complete trees. How to keep a heap in an array.
Graphs

The datatype. G = (V, E) Edges and how they are represented.
Shortest path

BFS – how to do it with a queue
Dijkstra – how to do it with a P-queue
Bellman-ford – how to do it with a queue

DAGs (Directed acyclic graphs)
Topological sort – how to do it.
Linear algorithm to find shortest paths in DAG
Given appropriate graph, find earliest finishing times, latest

finishing times, and slack time
Go to guest lecture tomorrow.

