CS 61B Data Structures and Programming Methodology

July 15, 2008

David Sun
Announcements

• Project 2 spec is out.
 – You can work individually or a team of two.
 – Due 7/28.

• Midter1 Regrades:

 If you believe we misgraded questions on a midterm, return the paper to me (or your TA) with a written note of the problem on a separate piece of paper. Upon receiving a regrade request, the entire exam will be regraded, so be sure to check the solution to confirm that you will not lose more points, which has happened in the past.
Inorder Traversal and Infix Expression

```java
static String toInfix (Tree<String> T) {
    if (T == null)
        return "";
    if (T.degree () == 0)
        return T.label ();
    else {
        return String.format ("(%s%s%s)",
                          toInfix (T.left ()), T.label (), toInfix (T.right ()))
    }
}
```

⇒ \((-x*(y+3))\)-z)
Preorder Traversal and Prefix Expression

static String toLisp (Tree<String> T) {
 if (T == null)
 return "";
 else if (T.degree() == 0)
 return T.label();
 else {
 String R; R = "";
 for (int i = 0; i < T.numChildren(); i += 1)
 R += " " + toLisp (T.child (i));
 return String.format ("(%s%s)", T.label (), R);
 }
}
Time

• Tree traversal is linear: $O(N)$, where N is the # of nodes.
 – there is one visit at the root, and
 – one visit for every edge in the tree
 – since every node but the root has exactly one parent, and
 the root has none, must be $N - 1$ edges in any non-empty
 tree.

• For k-ary tree (max # children is k),
 \[h + 1 \leq N \leq \frac{k^{h+1} - 1}{k-1}, \]
 where h is height.

• So $h \in \Omega(\log_k N) = \Omega(\lg N)$ and $h \in O(N)$

• Many tree algorithms look at one child only. For them, time is proportional to the height of the tree, and this is $\Theta(\lg N)$ assuming that tree is bushy—each level has about as many nodes as possible.
Binary Tree

• A binary tree is a tree in which no node has more than two children, and every child is either a **left child** or a **right child**, even if it's the only child its parent has.
Representing Binary Trees

- Each tree node has three references to neighboring tree nodes: a "parent" reference, and "left" and "right" references for the two children. Each node also has an "item" reference.

```java
class BinaryTree{
    SibTreeNode root;
    int size;
}

class BinaryTreeNode{
    Object item;
    SibTreeNode parent;
    SibTreeNode left;
    SibTreeNode right;
}

public void inorder() {
    if (left != null) {
        left.inorder();
    }
    this.visit();
    if (right != null) {
        right.inorder();
    }
}
```
Divide and Conquer

• Much computation is devoted to finding things in response to various forms of query.
• Linear search for response can be expensive, especially when data set is too large for primary memory.
• Preferable to have criteria for dividing data to be searched into pieces recursively
• Tree is a natural framework for the representation:
Binary Search Tree

• Binary Search Tree is a binary tree.
• Generally, each node of the Binary Search Tree contains an <Key, Value> pair called an Entry.
 – The key can be the same as the value.
• Binary Search Tree satisfies the following property, called the *binary search tree invariant*: For any node X,
 – every key in the *left* subtree of X is *less than or equal* to X's key, and
 – every key in the *right* subtree of X is *greater than or equal* to X's key.
 – A key equal to the parent's key can go into either subtree.
• Example.
Finding

```java
public Entry find (Comparable aKey) {
    BinaryTreeNode T = findHelper(root, aKey);
    if (T == null)
        return null;
    else
        return T.entry;
}
private static BinaryTreeNode findHelper(BinaryTreeNode T, Comparable aKey)
{
    if (T == null)
        return T;
    //compare the Key with the current node
    int comp = aKey.compareTo(T.entry.key());
    //aKey is smaller, look in the right subtree
    if (comp < 0)
        return find(T.left, aKey);
    //aKey is larger, look in the right subtree
    else if (comp < 0)
        return find(T.right, aKey);
    else
    //return when find a match
        return T;
}
```

- Dashed boxes show which node labels we look at.
- Number looked at proportional to height of tree.
public Entry find(Comparable aKey) {
 //start at the root
 BinaryTreeNode T = root;
 while (node != null) {
 //compare the key with the current node
 int comp = aKey.compareTo(T.entry.key);
 //aKey is smaller, look in the left subtree
 if (comp < 0)
 node = node.left;
 //aKey is larger, look in the right subtree
 else if (comp > 0)
 node = node.right;
 //Stop and return when find a match
 else
 return node.entry;
 }
 //Return null on failure
 return null;
}
Finding

- What if we want to find the smallest key greater than or equal to k, or the largest key less than or equal to k?
- When searching downward through the tree for a key k that is not in the tree, we are certain to encounter both
 - the node containing the smallest key greater than k (if any key is greater)
 - the node containing the largest key less than k (if any key is less).

- Implement a method `smallestKeyNotSmaller(k)`:
 - Use a variable to track the smallest key not smaller than k found so far.
 - Pretend you are looking for key k, if you find it return immediately.
 - When you encounter a null pointer, return the value of the variable.
First and Last

- Entry first() – find the smallest key in the binary tree
 - If the tree is empty, return null. Otherwise, start at the root. Repeatedly go to the left child until you reach a node with no left child.

- Entry last() – find the largest key in the binary tree
 - If the tree is empty, return null. Repeatedly go to the right child until you reach a node with no right child.
Inserting

• `insert()` starts by following the same path through the tree as `find()`.
• When it reaches a `null` reference, replace the `null` with a reference to a new node `<Key, Value>`.
• Duplicate keys are allowed.
 – If `insert()` finds a node that already has the key, it puts it the new entry in the left subtree of the older one.
 – We could just as easily choose the right subtree; it doesn't matter.
public insert(Entry e) {
 insertHelper(root, E);
}

BinaryTreeNode static insertHelper(BinaryTreeNode T, Entry E) {
 if (T == null)
 return new BinaryTreeNode(E);
 // compare the Key with the current node
 int comp = aKey.compareTo(E.key);
 // aKey is smaller or equal, insert in the left subtree
 if (comp <= 0)
 T.left = insert(T.left, E);
 // aKey is larger, insert in the right subtree
 else // if (comp > 0)
 T.left = insert(T.right, E);
 return T;
}
Reading

• Objects, Abstraction, Data Structures and Design using Java 5.0
 – Chapter 8 pp408 - 433