CS 61B Data Structures and Programming Methodology

July 28, 2008
David Sun
Announcements

• Midterm II on Wed 7/31, 11:00am – 12:30pm
 – In class open book. No computational devices allowed.
 – Covers everything up and including today’s lecture.

• Revision class tomorrow.
 – 45 minute mini-mock exam.

• Project 3 will be out later today.
 – Check newsgroup and course website.
 – Option to work in pairs or groups of three.

• It’s your responsibility to stay up-to-date with the newsgroup!
Space Complexity

• Not-in-place version:
 – Partitioning uses an additional $\Theta(n)$ storage space (best case) and $\Theta(n^2)$ (worst case).

• To partition in-place:
 – Given an array a and sort all elements between $l(eft)$ and $r(ight)$.
 – Choose a pivot v and swap with $a[r]$.
 – Initialize i to $l - 1$, and j to r so i and j sandwich the items to be sorted (not including the pivot).
 – Enforce the following invariants.
 • All items at or left of index i have a key \leq the pivot's key.
 • All items at or right of index j have a key \geq the pivot's key.
Quicksort on Arrays

- (continued)
 - Advance i to the first $a[i]$ greater than or equal to the pivot.
 - Decrement j until the first $a[j]$ less than or equal to the pivot.
 - $a[i]$ and $a[j]$ are on the wrong side of the partition, so swap $a[i]$ and $a[j]$.
 - Repeat until the indices i and j meet in the middle.
 - Move the pivot back into the middle – swapping the last item with $a[i]$.
public static void quicksort(Comparable[] a, int left, int right) {
 // If there's fewer than two items, do nothing.
 if (left < right) {
 int pivotIndex = random number from left to right;
 //Swap pivot with last item
 Comparable pivot = a[pivotIndex];
 a[pivotIndex] = a[right];
 a[right] = pivot;
 int i = left - 1;
 int j = right;
 do {
 do { i++; } while (a[i].compareTo(pivot) < 0);
 do { j--; } while ((a[j].compareTo(pivot) > 0) && (j > left));
 if (i < j) { swap a[i] and a[j]; }
 } while (i < j);
 a[right] = a[i];
 a[i] = pivot;
 // Put pivot in the middle where it belongs
 quicksort(a, left, i - 1); // Recursively sort left list
 quicksort(a, i + 1, right); // Recursively sort right list
 }
}
Some Details

• Can the "do { i++ }" loop walk off the end of the array and generate an out-of-bounds exception?
 – No, because a[right] contains the pivot, so i will stop advancing when i == right (if not sooner).

• There is no such assurance for j, though, so the "do { j-- }" loop explicitly tests whether "j > left" before decrementing.
Comparison of $O(n \log n)$ Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst-case</th>
<th>Space</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quicksort</td>
<td>Theta(n^2)</td>
<td>Theta($\log n$) (in-place partitioning)</td>
<td></td>
</tr>
<tr>
<td>Heapsort</td>
<td>Theta($n\log n$)</td>
<td>Theta(1)</td>
<td>Heapsort requires efficient random access.</td>
</tr>
<tr>
<td>Mergesort</td>
<td>Theta($n\log n$)</td>
<td>Theta(n) (on arrays)</td>
<td>Works well with linked lists (e.g., disk storage).</td>
</tr>
</tbody>
</table>
Selection

• The selection problem: we want to find the kth smallest key in a list, i.e. what’s the kth item in the list when it’s in sorted order?

• One approach: sort the list, then look up the item at index k.

• But what if we don’t care if the rest of the list is in sorted order or not, is there a faster way?
Quickselect

• In quicksort observe that:
 – after the partitioning step, we have three lists: L1, Lv, and L2.
 – We know which of the three lists contains index j, because we know the lengths of L1 and L2.
 – Therefore, we only need to search one of the three lists.
Quickselect

Start with an unsorted list I of n input items.
Choose a pivot item v from I.
Partition I into three unsorted lists I_1, I_v, and I_2.
I_1 contains all items whose keys are smaller than v's key.
I_2 contains all items whose keys are larger than v's.
I_v contains the pivot v.

if ($j < |I_1|$) {
 Recursively find the item with index j in I_1; return it.
} else if ($j < |I_1| + |I_v|$) {
 Return the pivot v.
} else { // $j \geq |I_1| + |I_v|$.
 Recursively find the item with index $j - |I_1| - |I_v|$ in I_2;
 return it.
}
Comparison Sort

• All the sorting algorithms we’ve seen so far are comparison sorts:
 – the ordering of the elements can be determined by comparison of their keys.
 – All actions taken by the sorting algorithm are based on the results of a sequence of true/false questions (a two way decision).

• If all you can do is comparison, then it can be proven that you can do no better than $\Omega (n \log n)$ in the worst case to sort n elements
 – In this sense, merge sort and heapsort are asymptotically optimal.
Lower Bound of Comparison Sort

• Given a random scrambling of n numbers in an array, with each number from 1...n occurring once. How many possible orders (or permutations) can the numbers be in?
 – The answer is $n!$, where $n! = 1 \times 2 \times 3 \times ... \times (n-2) \times (n-1) \times n$.
 – Observe that if $n > 0$,

 $n! = 1 \times 2 \times ... \times (n-1) \times n \leq n \times n \times ... \times n \times n \times n = n^n$ and

 $n! = 1 \times 2 \times ... \times (n-1) \times n \geq n/2 \times (n/2 + 1) \times ... \times (n-1) \times n$

 $\geq (n/2)^{(n/2)}$
 – So $(n/2)^{(n/2)} \leq n! \leq n^n$.
 – Let's look at the logarithms of both these numbers:

 $\log((n/2)^{(n/2)}) = (n/2) \log (n/2)$, which is in Theta($n \log n$), and $\log (n^n) = n \log n$.
 – Hence, $\log(n!)$ is also in Theta($n \log n$).
Lower Bound of Comparison Sort

• Given $n!$ of the input, a *correct* sorting algorithm must do $n!$ different permutations of comparisons and swap operations.

• Therefore, there must be $n!$ possible permutations of true/false answers for the $n!$ permutations of inputs.

• If a sorting algorithm never asks more than k true/false questions, it generates less than or equal to 2^k different sequences of true/false answers.

 – If it correctly sorts every permutation of $1...n$, then $n! \leq 2^k$, so $\log_2 (n!) \leq k$, and k is in $\Omega(n \log n)$.
Linear Sorting Algorithms

• But suppose can do more than comparing keys.
• What if we know *something* about the keys that are being sorted:
 – For example, how can we sort a set of n integer keys whose values range from 0 to kn, for some small constant k?
• One technique: for each element x, determine the number of elements less than x. We can place x immediately into its right position.
 – If $M_p = \#\text{items with value } < p$, then in sorted order, the jth item with value p must be $#M_p + j$.
• Gives linear-time algorithm.
Counting Sort

• Suppose all items are between 0 and 9:

```
7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0
```

```
<table>
<thead>
<tr>
<th>Counts</th>
<th>Running sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td></td>
</tr>
<tr>
<td>0 3 6 7 9 11 12 13 16 16</td>
<td></td>
</tr>
</tbody>
</table>
```

• “Counts” line gives # occurrences of each key.
• “Running sum” gives cumulative count of keys each value which tells us where to put each key:

 – The first instance of key k goes into slot m, where m is the number of key instances that are < k.
Running Time of Counting Sort

- \(\Theta(n + k) \) where \(n \) is the size of the input and \(k \) is the length of the counting array.
 - In order for this algorithm to be efficient, \(k \) must not be much larger than \(n \).
- The indices of the counting array must run from the minimum to the maximum value in the input to be able to index directly with the values of the input.
- Otherwise, the values of the input will need to be translated (shifted), so that the minimum value of the input matches the smallest index of the counting array
Bucket Sort

- Again, uses the fact that
 - the keys are distributed with in some small range of values. e.g. from 0 to $q-1$, and
 - the number of items n is larger than, or nearly as large as, q, i.e. q is in $O(n)$.
- Allocate an array of q queues, numbered from 0 to $q-1$, called buckets.
- We walk through the list of input items, and enqueue each item in the appropriate queue:
 - an item with key i goes into queue i.
- When we're done, we concatenate all the queues together in order.
Running Time of Bucket Sort

• Theta(q + n) time - in the best case and in the worst case.
 – It takes Theta(q) time to initialize the buckets in the beginning
 – It takes Theta(q) to concatenate the queues in the buckets together in the end.
 – It takes Theta(n) time to put all the items in their buckets.

• If q is in O(n) - that is, the number of possible keys isn't much larger than the number of items we're sorting - then bucket sort takes Theta(n) time.
Stability of Sorting

- A sort is stable if items with equal keys come out in the same order they went in.
- Bucket sort is a stable sort.
- Previously seen sorting algorithms: insertion sort, selection sort, and mergesort can all be implemented so that they are stable.
- The linked list version of quicksort we have seen can be stable, but the array version is decidedly not.
- Heapsort is never stable.