CS 61B Data Structures and Programming Methodology

Aug 4, 2008

David Sun
Linear Sorting Algorithms

• But suppose can do more than comparing keys.
• What if we know *something* about the keys that are being sorted:
 – For example, how can we sort a set of n integer keys whose values range from 0 to kn, for some small constant k?
• One approach: for each element x, determine the number of elements *less* than x. We can place x immediately into its right position.
 – If $M_p = \#\text{items with value } < p$, then in sorted order, the jth item with value p must be $#M_p + j$.
• Gives linear-time algorithm.
Counting Sort

• Suppose all items are between 0 and 9:

| 7 0 4 0 9 1 9 1 5 3 7 3 1 6 7 4 2 0 |
| 3 3 1 2 2 1 1 3 0 3 |
| 0 1 2 3 4 5 6 7 8 9 |
| 0 3 6 7 9 11 12 13 16 16 |
| <0 <1 <2 <3 <4 <5 <6 <7 <8 <9 |
| 0 0 0 1 1 1 2 3 3 4 |
| 0 3 6 9 11 12 13 16 |

• “Counts” array gives number of occurrences of each item.
• “Running sum” gives cumulative count of item. Each value which tells us where to put each item:
 – The first instance of key k goes into slot m, where m is the number of key instances that are $< k$.
int[] countingSort (int[] x, int maxKey) {
 int[] counts = new int[maxKey];
 int[] runningSum = new int[maxKey];
 int i, j, c, total;

 //takes theta(n)
 for (i = 0; i < x.length; i++) {
 counts[x[i]]++;
 }
 total = 0;
 //takes theta(k)
 for (j = 0; j < counts.length; j++) {
 runningSum[j] = total;
 total = total + counts[j];
 }
 //takes theta(n)
 for (i = 0; i < x.length; i++) {
 y[runningSum[x[i]]] = x[i];
 runningSum[x[i]]++;
 }
}
Running Time of Counting Sort

• $\Theta(n + k)$ where n is the size of the input and k is the length of the counting array.
 – Takes $\Theta(n)$ time to set up the count array.
 – Takes $\Theta(k)$ time to build the Running Sum array.
 – Takes $\Theta(n)$ time to assign items in the input array into the output array using the Running Sum array.

• In order for this algorithm to be efficient, k must not be much larger than n.
 – If k is in $O(n)$, then the running time is $\Theta(n)$.
Comments

• The indices of the *counting* array must run from the *minimum* to the *maximum* value in the input to be able to index directly with the values of the input.

• Otherwise, shift the values of the input so that the minimum value of the input matches the smallest index of the counting array.

• Counting sort is stable: numbers with the same value appear in the output array in the same order as they do in the input.
Bucket Sort

- Similar to *Counting Sort*, uses the fact that
 - the keys are distributed with in some small range of values. e.g. from 0 to $q-1$, and
 - the number of items n is larger than, or nearly as large as q, i.e. q is in $O(n)$.

- Basic version:
 1. *Initialize*: Allocate an array of q queues, numbered from 0 to $q-1$, called buckets.
 2. *Scatter*: We walk through the list of input items, and enqueue an item with key i into queue i.
 3. *Gather*: When we're done, we concatenate all the queues together in order.
Running Time of Bucket Sort

• $\Theta(q + n)$ time - in the best case and in the worst case.
 – It takes $\Theta(q)$ time to initialize the buckets in the beginning
 – It takes $\Theta(q)$ to concatenate the queues in the buckets together in the end.
 – It takes $\Theta(n)$ time to put all the items in their buckets.
Generalized Bucket Sort

1. *Initialize*: Allocate an array of *m* buckets, numbered from 0 to *m*-1. If the values of input array ranges from 1 to *q*, each bucket *i* will contain input values from \(i\cdot q/m \) to \(i\cdot(q/m+1) - 1 \).

2. *Scatter*: Walk through the list of input items, and add an item with key *i* into bucket \(i \div q \).

3. *Sort*: Sort the each of the buckets individually by picking another sorting algorithm or recursively apply Bucket Sort.

4. *Gather*: Concatenate all the queues together in order.
Comments

• Bucket sort works well when the input values are drawn from a uniform distribution.
• If clustering occurs, some buckets will get more values than others, and the running time will be dominated by these “heavy” buckets.
• If each bucket has a size of 1, then bucket sort is essentially the same as counting sort.
• If the number of buckets is 2, then bucket sort is essentially the same as quick sort, where the pivot is chosen perfectly.
Radix Sort

• How to sort 1,000 items in the range from 0 to 99,999,999?
 1. Using bucket/counting sort: spend too much time initializing the buckets.
 2. Provide 10 buckets (instead of 100 million) and sort on the first digit only using bucket sort. Then sort each queue recursively on the second digit; then sort the resulting queues on the third digit, and so on.
• This tends to break the set of input items into smaller and smaller subsets, each of which will be sorted relatively inefficiently.
Radix Sort

• The way it works:
 – Keep all the numbers together in one big pile throughout the sort.
 – Use counting/bucket sort to sort on the least significant digit (last digit), then the next-to-last, and so on up to the most significant digit.

• Why does this work?
 – Each pass is implemented using counting sort or bucket sort and both algorithms are stable!
 – After sorting on the last digital, all the values in the input that differ only in the last digit are put into their correct relative order.
 – After sorting on the second last digit, all the values that differ only in the last and second last digits are put into their correct relative order.
Example

Sort on 1s: 720 450 771 822 332 504 925 5 955 825 777 858 28 829
Sort on 10s: 504 5 720 822 925 825 28 829 332 450 955 858 771 777
Sort on 100s: 5 28 332 450 504 720 771 777 822 825 829 858 925 955
Radix Sort

• Radix sort will likely be faster if we sorted on two digits, or even three digits, at a time.

• The radix is denoted by q – all the numbers in the input are treated as base-q numbers:
 – Sorting in two digits means to use a radix of $q = 100$.
 – Sorting in three digits means using a radix of $q = 1000$.

• On computers, it’s more natural to choose a power-of-two radix, like $q = 256$.
 – they are easier to extract from a key – just pull out the eight bits that we need by using bit operators.
Running time of Radix Sort

• Each pass of the radix sort uses counting/bucket sort: \(\Theta(n+q) \).

• How many passes must we perform?
 – Each pass inspects a single digit of the input value, treated as a based-\(q \) number. This corresponds to \(\log_2 q \) bits.
 – If all the numbers can be represented in \(b \) bits, the number of passes is ceiling\((b / \log_2 q)\).

• The running time of radix sort is in \(O((n+q) \text{ ceiling}(b / \log_2 q)) \).
Choosing the Radix

• How should we choose the number of queues q?
• Choose q to be in $O(n)$, so each pass of bucket sort or counting sort takes $O(n)$ time.
• However, we want q to be large enough to keep the number of passes small.
• Therefore, let’s choose q to be approximately n. With this choice, the number of passes is in $O(1 + \frac{b}{\log_2 n})$, and radix sort takes $O(n + \frac{b}{\log_2 n})$
Graphs

• A graph G consists of:
 – a set V of vertices
 – a set E of edges that each connect a pair of vertices together
• Formalism: a graph G with vertex set V and edge set E is denoted as $G = (V, E)$.
• Directed graph:
 – Every edge e is directed from a vertex v to a vertex w, denoted as $e = (v, w)$ (the order matters).
 – The vertex v is called the origin of e, and w is the destination of e.
• Undirected graph:
 – Each edges e has no favored direction, and is denoted as $e = (v, w)$.
Graphs

• Multiple copies of an edge are forbidden, but a directed graph may contain both \((v, w)\) and \((w, v)\).
• Both types of graph can have self-edges of the form \((v, v)\), which connect a vertex to itself.
• A path is a sequence of vertices such that each adjacent pair of vertices is connected by an edge. For directed graphs, the edges on a path must all be aligned with the direction of the path. The length of a path is the number of edges it traverses.
• The distance from one vertex to another is the length of the shortest path from one to the other.
Graphs

• A graph is **strongly connected** if there is a path from any vertex to any other vertex.
 – For undirected graphs, this is just called *connected*.

• The **degree** of a vertex is the number of edges incident on that vertex.

• A vertex in a directed graph has
 – an **indegree** - the number of edges directed toward it and
 – an **outdegree** - the number of edges directed away.
Graph Representation

• Adjacent Matrix:
 – a \(|V|\)-by-\(|V|\) array of boolean values (where \(|V|\) is the number of vertices in the graph).
 – Each row and column represents a vertex of the graph.
 – Set the value at row \(i\), column \(j\) to \textit{true} if \((i, j)\) is an edge of the graph.
 – If the graph is undirected, the adjacency matrix is symmetric: \((i, j)\) has the same value as \((j, i)\).
Graph Representation

• The maximum possible number of edges is $|V|^2$ for a directed graph, and slightly more than half that for an undirected graph.
 – Cost of storage is quadratic in the number of vertices.
 – In many applications, however, the number of edges is much less than $Theta(|V|^2)$.

• A graph is called **sparse** if it has far fewer edges than the maximum possible number of vertices.
 – Number of edges is asymptotically smaller than $|V|^2$.
Graph Representation

• Adjacency List:
 – A more memory-efficient data structure for sparse graphs.
 – An adjacency list is a collection of linked lists. Each vertex \(v \) maintains a linked list of the edges directed out from \(v \).
 – Cost of representation is \(\Theta(|V| + |E|) \).
 – An adjacency list is more space- and time-efficient than an adjacency matrix
 – Less efficient than adjacency matrix for a complete graph
 -- for every vertex \(u \) and every vertex \(v \), \((u, v)\) is an edge of the graph.
 – Use a hash table to map non-integer vertices to linked lists.
 Each entry in the hash table uses a vertex name as a key, and a List as the associated value.
Readings

- Objects, Abstractions, Data Structures and Design
 - Chapter 12.