CS 61B Data Structures and Programming Methodology

Aug 6, 2008

David Sun
Breadth-first Search

• Starts at an arbitrary source vertex s then visits every vertex that is reachable from it.
 – During this systematic traversal we can compute the distance (in terms of the smallest number of edges) and the shortest path from s to each reachable vertex v.

• Called Breadth-first because it:
 – Visits all vertices whose distance from the starting vertex is one, then all vertices whose distance from the starting vertex is two, and so on.
BFS(Graph G) {
 Queue<Vertex> fringe;
 fringe = queue containing {v};
 v.dist() = 0;
 v.parent() = null;

 while (! fringe.isEmpty()) {
 Vertex v = fringe.dequeue();
 For each edge (v,w) {
 if (! marked (w))
 mark(w);
 w.dist() = v.dist() + 1;
 w.parent() = v;
 fringe.enqueue(w);
 }
 }
}
Correctness of BFS

• The starting vertex is enqueued first, then all the vertices at a distance of 1 from the start, then all the vertices at a distance of 2, and so on.

• Why?
 – When the starting vertex is dequeued, all the vertices at a distance of 1 are enqueued, but no other vertex is.
 – When the depth-1 vertices are dequeued and processed, all the vertices at a distance of 2 are enqueued, because every vertex at a distance of 2 must be reachable by a single edge from some vertex at a distance of 1.
 – When the depth-1 vertices are dequeued and processed no vertex at a depth other than 2 will be enqueued, because every vertex at a distance greater than 2 is not reachable by a single edge from some vertex at depth of 1.
Running Time of BFS

• Observations:
 – Each of the $|V|$ vertices is enqueued at most once, and hence dequeued at most once.
 – Enqueuing and dequeuing take $O(1)$ time – total time devoted to queue operations $O(|V|)$.
 – If adjacency list representation is used:
 • each adjacency list is scanned at most once.
 • the sum of the length of all adjacency lists is $\Theta(|E|)$.
 • time spent scanning the adjacency list is $O(|E|)$

• Running time:
 – $O(|V| + |E|)$ if using adjacency list.
 – $O(|V|^2)$ if using adjacency matrix.
Problem:
You want to wire the pins of some circuit component. With n pins, you can interconnect them using $n-1$ wires. Of all possible arrangements, we'd like to find the one that uses the least amount of wire.
Minimum Spanning Tree

• We can model the problem using using a connected, undirected graph $G = (V, E)$ as follows:

 – V is the set of pins,
 – E is the set of possible interconnections (between pairs of pins),
 – For each edge (u,v) in E, there is a weight(u, v) specifying the cost (amount of wires) needed to connect u to v.
 – Now, find an acyclic, subset T connects all the vertices and whose total weight is minimized.
Minimum Spanning Tree

- T is acyclic and connects all of the vertices,
 - it must form a tree, which we call a spanning tree since it “spans” the vertices of the graph G.
 - we are not minimizing the number of edges in T, since all spanning trees have exactly $|V|-1$ edges.
 - the problem of determining T given a graph is called the minimum-spanning-tree problem.
Generic Algorithm

• Generic Algorithm for finding the *minimum spanning tree*:
 – A iterative algorithm that uses a *greedy strategy*, which means that at each iteration, we “grow” the current spanning tree by picking an edge with the least weight.

```
Generic-MST(Graph G)
Set<Vertex>A;
while A does not form a spanning tree
  find an edge (u,v) in E of G such that after adding (u,v) to A, A is a subset of a minimum spanning tree.
  Add (u,v) to A
```
Kruskal’s Algorithm

• Based directly on the generic minimum-spanning-tree algorithm:
 – At each iteration we find the edge of the least weight and that does not create a cycle.
 – The set of edges found so far forms a forest.

MST-Kruskal(Graph G)
1. Create a new tree T with the same vertex set as G.
2. Sort the edges of G in nondecreasing order by weight.
3. Iterate through the sorted edges, for each edge (u,v):
 If u and v are not connected by an edge in T
 add (u,v) to T
Example
Running Time of Kruskal’s Algorithm

- **Step 1** Creating a new graph with the same vertex set:
 - Takes $O(|V|)$ time.
- **Step 2** Sorting $|E|$ edges:
 - Using one of the logarithmic-time sorting algorithms, e.g., mergesort, heapsort or quicksort, we can do this in $O(|E| \log |E|)$ time.
- **Step 3** Determining whether u and w are already connected by a path.
 - A simple way is to do a depth-first traversal on T starting at u, and see if we visit w, however, potentially taking $\Theta(|V|^2)$ time.
 - We can do better using *Disjoint Sets*, which takes $O(|E| \log |E|)$ time.
- Hence, the running time is in $O(|V| + |E| \log |E|)$.
- If $|E| < |V|^2$, then $\log |E| < 2 \log |V|$. Therefore, Kruskal's algorithm runs in $O(|E| \log |V|)$ time.
Correctness of Kruskal’s Algorithm

• Suppose the algorithm is considering adding an edge \((u, w)\) to \(T\), and there is not yet a path connecting \(u\) to \(w\).

• Let \(U\) be the set of vertices in \(T\) that are connected (so far) to \(u\), and let \(W\) be a set containing all the other vertices, including \(w\).

• Let the **bridge edges** be any edges in \(G\) that have one end vertex in \(U\) and one end vertex in \(W\).

• **Argument:** Any spanning tree must contain at least one of these bridge edges. As long as we choose a bridge edge with the lowest weight, we are safe.
Prime’s Algorithm

• Operates much like *Dijkstra’s* algorithm for finding shortest paths in a graph.
 – The set of edges found so-far always forms a *tree*.
 – Start at some root and grow the tree until it spans all the vertices in V.
 – At each iteration, we add to the *tree* the edge of least weight that does not create a cycle.
Prime’s Algorithm

MST-Prime(Graph G)
PriorityQueue fringe;
For each vertex v {
 v.dist() = ∞;
 v.parent() = null;
}
Choose an arbitrary starting vertex, s;
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
 Vertex v = fringe.removeMin();
 For each edge (v, w) {
 if (w ∈ fringe && weight(v, w) < w.dist()) {
 w.dist() = weight (v, w); w.parent() = v;
 }
 }
}
Running Time of Prime’s Algorithm

- Initialization and putting all the vertices into the priority queue: $O(|V|)$ time.
- Removing the minimum element from the priority queue in each iteration: $O(\log |V|)$ time. This is executed $|V|$ times: $O(|V| \log |V|)$.
- The body of the for-loop takes $O(\log |V|)$ since by updating \(\text{dist}() \) of a vertex, we are effectively reinserting the vertex into the priority queue. The body of the for-loop is executed $|E|$ times: $O(|E| \log |V|)$.
- Hence the running time of Prime’s algorithm is $O(|E| \log |V| + |V| \log |V|) = O(|E| \log |V|)$, which is asymptotically the same as the implementation of Kruskal’s algorithm using Disjoint Sets.