Announcements

• Final will be held next Thursday 14th of Aug. Exact time TBA.

• Two review sessions next week, Tuesday and Wednesday during class with mock-exams.

• If you are taking CS61C and plan to take the CS61C exam on 14th of Aug, please send me an email with your name and student ID.
Recap: Binary Search Tree Running Times

• In a perfectly (full) balanced binary tree with height/depth h, the number of nodes $n = 2^{(h+1)} - 1$.
• Therefore, no node has depth greater than $\log_2 n$.
• The running times of `find()`, `insert()`, and `remove()` are all proportional to the depth of the last node encountered, so they all run in $O(\log n)$ worst-case time on a perfectly balanced tree.
Recap: Binary Search Tree Running Times

- What’s the running time for this binary tree?
- The running times of `find()`, `insert()`, and `remove()` are all proportional to the depth of the last node encountered, but \(d = n - 1 \), so they all run in \(O(n) \) worst-case time.
Recap: Binary Search Tree Running Times

• The Middle ground: reasonably well-balanced binary trees
 – Search tree operations will run in $O(\log n)$ time.

• You may need to resort to experiment to determine whether any particular application will use binary search trees in a way that tends to generate balanced trees or not.
2-3-4 Trees

• A 2-3-4 tree is perfectly balanced:
 – find, insert, and remove operations take $O(\log n)$ time, in the worst case.

• Every node in the tree has 2, 3, or 4 children, except leaves, which are all at the bottom level of the tree.
 – Each node stores 1, 2, or 3 entries, which determine how other entries are distributed among its children's subtrees.

• Each internal (non-leaf) node has one more child than keys.
 – For example, a node with keys $[20, 40, 50]$ has four children.

• 2-3-4 tree invariant:
 – Each key k in the subtree rooted at the first child satisfies $k \leq 20$; at the second child, $20 \leq k \leq 40$; at the third child, $40 \leq k \leq 50$; and at the fourth child, $k \geq 50$.
find

1. Start at the root. At each node, check for the key k. If k is found, we are done.

2. If it's not present, and if $k < k_1$, where k_1 is the first key stored in the node, then look in the subtree rooted at k_1. Otherwise, if $k_1 < k < k_2$, then look in the subtree rooted at k_2. Continu
insert

1. `insert()` walks down the tree in search of the key k (like `find()`).

2. If it find an entry with key k, it proceeds to that entry's "left child" and continues.

3. When `insert()` encounters a 3-key node, the middle key is ejected from the current node, and placed in the parent node. The other two keys in the 3-key node are split into two separate 1-key nodes, which are divided underneath the old middle key.
The splitting of every 3-key node is to make sure that:

- there's room for the new key in the leaf node (if splitting happens at a leave node)
- there's room for the ejected keys that are moved into the the internal nodes (if splitting happens at an internal node).

Insert may increase the depth of the tree by one if the root of the tree was a 3-key node.
remove

1. Find a node containing key k using the same algorithm as `find()`.
2. Return `null` if k is not in the tree;
3. If k is found in a leaf node, remove it.
4. If k is found in an internal node, replace it with the entry with the next higher key.
remove

- Remove could potentially empty a 1-key leaf node, so we need to *eliminate* all 1-key nodes by turning it into either a 2-key node through *rotation* or a 3-key node through *fusion*.

- **Case 1 if there is an adjacent sibling with more than 1 key:**
 - Steal a key from this adjacent sibling.
 - To maintain the 2-3-4 tree invariant, perform a *rotation* by moving a key from the sibling to the parent and moving a key from the parent to the 1-key node.
 - If the moved key in the sibling has a subtree S, then that subtree is moved to the 1-key node (now a 2-key node).
remove

• **Case 2 if no adjacent siblings have more than 1 child:**
 – Steal a key from the parent and *fuse* the 1-key node, the key from the parent node, and the 1-key sibling node into one node.
 – Since the parent must be visited before the current node, it must have at least 2 keys (unless it’s the root).
• *Case 3 if the parent is the root and contains only one key, no adjacent sibling has more than one key:*
 – *Fuse* the current 1-key node, its 1-key sibling, and the 1-key root into one 3-key node that serves as the new root.
 – The only case where the depth of the tree decreases by one.
Running Time

- A 2-3-4 tree with depth d has between 2^d (if all the nodes are 1-key nodes) and 4^d (if all the nodes are 3-key nodes) leaves.
- If n is the total number of nodes, then $n \geq 2^{(d+1)} - 1$. Taking the logarithm of both sides, d is in $O(\log n)$.
- 2-3-4 tree operations are more complicated than corresponding operations for binary search trees, so the time required to process a single node is longer, but still in $O(1)$ time.
- The number of nodes visited is proportional to the depth of the tree.
 - Hence, the running times of the `find()`, `insert()`, and `remove()` operations are in $O(d)$ and hence in $O(\log n)$, even in the worst case.
 - Compare this with the $Theta(n)$ worst-case time of ordinary binary search trees.
A splay tree is a type of balanced binary search tree. Structurally, it is identical to an ordinary binary search tree; the only difference is in the algorithms for finding, inserting, and deleting entries.

All splay tree operations run in $O(\log n)$ time on average, where n is the number of entries in the tree. Any single operation can take $Theta(n)$ time in the worst case. But any sequence of k splay tree operations, with the tree initially empty and never exceeding n items, takes $O(k \log n)$ worst-case time.
Rotation

• Rotation is a procedure that keeps splay tree (and other balanced search trees) balanced.
• There are two types -- a left rotation and a right rotation -- and each is the other’s reverse.
• The rotation procedure preserves the binary search tree invariant, i.e. after the rotation, the left subtree is less than or equal to the root and the right subtree is more than or equal to the root.
find

1. Walk down the tree until we find the entry with key \(k \), or reach a dead end (just like binary search tree).

2. In both cases, splay the last visited node \(X \) (where the search ended) up the tree to become the new root via a sequence of rotations.
 1. Recently accessed entries are near the root of the tree, so if you access the same few entries repeatedly, accesses will be very fast.
 2. If \(X \) lies deeply down an unbalanced branch of the tree, the splay operation will improve the balance along that branch.
find

• Case 1 X is the right child of a left child
 – let P be the parent of X, and let G be the grandparent of X, first rotate X and P left and then rotate X and G right.
 – called the zig-zag.

• Case 1.1 X is a left child and P is a right child:
 – rotate X and P right, then X and G left.

• Case 2 X is the left child of a left child
 – start with the grandparent, and rotate G and P right. Then, rotate P and X right.
 – called the zig-zig.

• Case 2.1 X is the right child of a right child
 – rotate G and P left. rotate P and X left.
find

• Repeatedly apply zig-zag and zig-zig rotations to X.
 – each pair of rotations raises X two levels higher in the tree.
 – eventually, either X will reach the root (and we're done), or X will become the child of the root.

• Case 3 X's parent P is the root:
 – rotate X and P so that X becomes the root. This is called "zig" case.
Readings

• Objects, Abstractions, Data Structures and Design
 – Chapter 11.1 – 11.3