Many thanks to David Sun for some of the included slides!

Important Dates

- **Project 2 due**
 - DESIGN, DESIGN, DESIGN!!!
 - You may have 0 or 1 partner.
 - NO EXCEPTIONS!
 - Due Friday 7/24/2009 – 10pm
- **Midterm Review**
 - Saturday 7/26/2009 – 1-4pm in 306 Soda
- **Midterm 2**
 - Tuesday 7/28/2009 – 5-6pm in 10 Evans

Queues (Review)

```java
public interface Queue {
    public int size();
    public boolean isEmpty();
    public void enqueue(Object item);
    public Object dequeue() throws EmptyQueueException;
    public Object front() throws EmptyQueueException;
}
```

What data structure would you use to store a queue?

- Hash Table
- Binary Search Tree
- Linked List
- Array

Using a Hash Table to implement a Queue (not a “good” idea)

- Key is the # in line
- Value is the object in the queue
- Keep track of the current number

Regular Queues with an Array

- Insert 5

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 3 2 8 9 7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 3 2 8 9 7 5</td>
<td></td>
</tr>
</tbody>
</table>
Regular Queues with an Array

• Remove First

Start
6 3 2 8 9 7 5
End

An Empty Queue

Start
End

A Queue Based upon Priority
PriorityQueue

public interface PriorityQueue {
 public int size();
 public boolean isEmpty();
 Entry insert(Object k, Object v);
 Entry max();
 Entry removeMax();
}

PriorityQueues Implemented with
Sorted Arrays

<table>
<thead>
<tr>
<th>Operation</th>
<th>Run Time</th>
<th>Other Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>size()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>isEmpty()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert(...)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>removeMax()</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PriorityQueues Implemented with
Non-Sorted Arrays

<table>
<thead>
<tr>
<th>Operation</th>
<th>Run Time</th>
<th>Other Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>size()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>isEmpty()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert(...)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>removeMax()</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Binary Heaps

• A Binary Heap is a binary tree, with two additional properties
 – Shape Property: It is a complete binary tree – a binary tree in which every row is full, except possibly the bottom row, which is filled from left to right.
 – Heap Property (or Heap Order Property): No child has a key greater than its parent’s key. This property is applied recursively: any subtree of a binary heap is also a binary heap.
• If we use the notion of smaller than in the Heap Property we get a min-heap. We’ll look at max-heap in this lecture.
Heaps Implement PriorityQueue

```java
public interface PriorityQueue {
    public int size();
    public boolean isEmpty();
    Entry insert(Object k, Object v);
    Entry max();
    Entry removeMax();
}
```

max()

- Trivial: The heap-order property ensures that the entry with the maximum key is always at the top of the heap. Hence, we simply return the entry at the root node.
 - If the heap is empty, return null or throw an exception.
- Runs in O(1) time.

insert(8)

Let \(x \) be the new entry \((k, v)\).

1. Place the new entry \(x \) in the bottom level of the tree, at the first free spot from the left. If the bottom level is full, start a new level with \(x \) at the far left.
2. If the new entry's key violates the heap-order property then compare \(x \)'s key with its parent's key; if \(x \)'s key is larger, we exchange \(x \) with its parent. Repeat the procedure with \(x \)'s new parent.

removeMax()

1. If the heap is empty, return null or throw an exception.
2. Otherwise, remove the entry at the root node. Replace the root with the last entry in the tree \(x \), so that the tree is still complete.
3. If the root violates the heap property then compare \(x \) with its children, swap \(x \) with the child with the larger key, repeat until \(x \) is greater than or equal to its children or reach a leaf.

Representing Trees (Review)

Array representations are common for Heaps

- **Left Child at** \(2n + 1 \)
- **Right Child at** \(2n + 2 \)

This is not a heap!
A Different Tree Implementation

(don't use the 0 index)

This is not a heap!

Left Child at 2n
Right Child at 2n + 1

Bottom-Up Heap Construction

• Suppose we are given a bunch of randomly ordered entries, and want to make a heap out of them.
• What’s the obvious way
 – Apply insert to each item in O(n log n) time.
• A better way: bottomUpHeap()
 1. Make a complete tree out of the entries, in any random order.
 2. Start from the last internal node (non-leaf node), in reverse order of the level order traversal, heapify down the heap as in removeMax().

Cost of Bottom Up Construction

• If each internal node bubbles all the way down, then the running time is proportional to the sum of the heights of all the nodes in the tree.
• Turns out this sum is less than n, where n is the number of entries being coalesced into a heap.
• Hence, the running time is in O(n), which is better than inserting n entries into a heap individually.

Running Times (Appendix)

• We could use a list or array, sorted or unsorted, to implement a priority queue. The following table shows running times for different implementations, with n entries in the queue.

<table>
<thead>
<tr>
<th></th>
<th>Binary Heap</th>
<th>Sorted List/Array</th>
<th>Unsorted List/Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>max</td>
<td>Theta(1)</td>
<td>Theta(1)</td>
<td>Theta(n)</td>
</tr>
<tr>
<td>insert (worst-case)</td>
<td>Theta(log n)*</td>
<td>Theta(n)</td>
<td>Theta(1)*</td>
</tr>
<tr>
<td>insert (best-case)</td>
<td>Theta(1)</td>
<td></td>
<td>It depends</td>
</tr>
<tr>
<td>removeMax (worst)</td>
<td>Theta(log n)</td>
<td>Theta(1)</td>
<td>Theta(1)*</td>
</tr>
<tr>
<td>removeMax (best)</td>
<td>Theta(1)</td>
<td>Theta(1)</td>
<td>Theta(n)</td>
</tr>
</tbody>
</table>

* If you are using an array-based data structure, these running times assume that you don't run out of room. If you do, it will take Omega(n) time to allocate a larger array and copy them into it.