CS61BL

Lecture 5:
Graphs
Sorting
Graphs
(Undirected)
Graphs
(Directed)
Graphs
(Multigraph)
Graphs
(Acyclic)
Graphs (Cyclic)
Graphs
(Connected)
Graphs
(Disconnected)
Graphs
(Unweighted)
Graphs
(Weighted)
Graph Representation

• Adjacency Matrix
 – Matrix (e.g. 2D array) specifying which edges are present in a graph

\[
\begin{bmatrix}
A & B & C & D & E & F \\
A & 0 & 1 & 0 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 1 & 1 & 0 \\
C & 1 & 0 & 0 & 0 & 0 & 0 \\
D & 0 & 0 & 0 & 0 & 0 & 1 \\
E & 0 & 0 & 1 & 0 & 0 & 1 \\
F & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
Graph Representation

- **Adjacency Matrix**
 - Matrix (e.g. 2D array) specifying which edges are present in a graph

\[
\begin{array}{ccccccc}
A & B & C & D & E & F \\
\hline
A & X & 3 & X & X & X & X \\
B & X & X & X & X & 1 & -1 & X \\
C & 5 & X & X & X & X & X & X \\
D & X & X & X & X & X & X & 1 \\
E & X & X & 3 & X & X & X & 2 \\
F & X & X & X & X & X & X & X \\
\end{array}
\]
Graph Representation

• Adjacency List
 – Collection of lists of neighbors
 – Each list specifies a single vertex’s neighbors

A: [B]
B: [D, E]
C: [A]
D: [F]
E: [C, F]
F: []
Graph Representation

• Adjacency List
 – Collection of lists of neighbors
 – Each list specifies a single vertex’s neighbors

A: [(B, 3)]
B: [(D, 1), (E, -1)]
C: [(A, 5)]
D: [(F, 1)]
E: [(C, 3), (F, 2)]
F: []
Graph Traversal

• Almost same as tree traversal
 – Keep track of which vertices have been already been visited
 – Pick any vertex to start at instead of root
 – BFS, DFS
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue
While queue is not empty:
 Remove a vertex from queue
 Mark its unvisited neighbors as “visited” and add to queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue

While queue is not empty:
 Remove a vertex from queue
 Mark its unvisited neighbors as “visited” and add to queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue
While queue is not empty:
 Remove a vertex from queue
 Mark its unvisited neighbors as “visited” and add to queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue
While queue is not empty:
 Remove a vertex from queue
 Mark its unvisited neighbors as “visited” and add to queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue
While queue is not empty:
 Remove a vertex from queue
 Mark its unvisited neighbors as “visited” and add to queue

Head of queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue

While queue is not empty:

- Remove a vertex from queue
- Mark its unvisited neighbors as “visited” and add to queue

Head of queue: D E
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue

While queue is not empty:

- Remove a vertex from queue
- Mark its unvisited neighbors as “visited” and add to queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue

While queue is not empty:
 Remove a vertex from queue
 Mark its unvisited neighbors as “visited” and add to queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue
While queue is not empty:
 Remove a vertex from queue
 Mark its unvisited neighbors as “visited” and add to queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue

While queue is not empty:

Remove a vertex from queue

Mark its unvisited neighbors as “visited” and add to queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue
While queue is not empty:
 Remove a vertex from queue
 Mark its unvisited neighbors as “visited” and add to queue
Mark starting vertex as “visited” and add to queue

While queue is not empty:

Remove a vertex from queue

Mark its unvisited neighbors as “visited” and add to queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue
While queue is not empty:
 Remove a vertex from queue
 Mark its unvisited neighbors as “visited” and add to queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue

While queue is not empty:
 Remove a vertex from queue
 Mark its unvisited neighbors as “visited” and add to queue

Head of queue
Graph Traversal: BFS Example

Mark starting vertex as “visited” and add to queue

While queue is not empty:
 Remove a vertex from queue
 Mark its unvisited neighbors as “visited” and add to queue
Shortest Path Problem

- Find shortest path from some start vertex s to some end vertex t
- Google Maps, puzzles, pathing AIs, etc...
- Unweighted graph: use BFS
- Weighted graph: ?
Shortest Path Problem

- Weighted graph?
- Split each weighted edge into multiple intermediary vertices and edges?
 - Then run BFS?
Shortest Path Problem

• Weighted graph?
• Split each weighted edge into multiple intermediary vertices and edges?
 – Then run BFS?
Shortest Path Problem

• Weighted graph?
• Split each weighted edge into multiple intermediary vertices and edges?
 – Then run BFS?
Shortest Path Problem

• Weighted graph?
• Split each weighted edge into multiple intermediary vertices and edges?
 – Then run BFS?
Dijkstra’s Algorithm

• Finds shortest path from start vertex to every other vertex in graph
• Use priority queue as fringe
 – Priority value of vertex u is shortest path length we’ve found from starting vertex s so far
Dijkstra’s Algorithm Example

Add starting vertex s to priority queue w/ priority 0
Add all other vertices with priority \(\infty \)
While priority queue is not empty:

\[u = \text{vertex dequeued from priority queue} \]
For each neighbor \(v \):

If \(v \) is in priority queue, update \(v \)'s priority value with minimum of:

- Current priority
- Priority of \(u \) + weight of edge \((u, v)\)
Dijkstra’s Algorithm Example

Add s to priority queue with priority 0
Add all other vertices with priority ∞
Dijkstra’s Algorithm Example

While priority queue is not empty:

$u = \text{vertex dequeue'd from priority queue}$
Dijkstra's Algorithm Example

For each neighbor v, if v is in priority queue, update v's priority value with minimum of:

$[\text{Current priority}, \text{Priority of } u + \text{weight of edge } (u, v)]$
Dijkstra’s Algorithm Example

For each neighbor \(v \), if \(v \) is in priority queue, update \(v \)'s priority value with minimum of:

\[
\text{[Current priority, Priority of } u + \text{ weight of edge (} u, v)\text{]}
\]
Dijkstra’s Algorithm Example

While priority queue is not empty:

\[u = \text{vertex dequeued from priority queue} \]
Dijkstra’s Algorithm Example

For each neighbor v, if v is in priority queue, update v’s priority value with minimum of:

$[\text{Current priority, Priority of } u + \text{weight of edge (u, v)}]$
Dijkstra’s Algorithm Example

For each neighbor \(v \), if \(v \) is in priority queue, update \(v \)’s priority value with minimum of:

\[
\text{Current priority, Priority of } u + \text{ weight of edge } (u, v)
\]

Priority Queue

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>3</td>
<td>∞</td>
</tr>
</tbody>
</table>

Shortest Distances

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm Example

While priority queue is not empty:

\[u = \text{vertex dequeued from priority queue} \]
Dijkstra’s Algorithm Example

For each neighbor \(v \), if \(v \) is in priority queue, update \(v \)’s priority value with minimum of:

\[
\text{[Current priority, Priority of } u + \text{ weight of edge } (u, v)\]
\]
Dijkstra’s Algorithm Example

For each neighbor \(v \), if \(v \) is in priority queue, update \(v \)’s priority value with minimum of:

\[
\text{[Current priority, Priority of } u + \text{ weight of edge (} u, v \text{)]}
\]
Dijkstra’s Algorithm Example

While priority queue is not empty:

\[u = \text{vertex dequeued from priority queue} \]
Dijkstra’s Algorithm Example

For each neighbor \(v \), if \(v \) is in priority queue, update \(v \)’s priority value with minimum of:

\[
\text{[Current priority, Priority of } u + \text{ weight of edge } (u, v)]
\]

![Diagram of the graph with nodes A, B, C, D, and E connected by edges with weights 1, 2, 3, 4, 5, 9. The priority queue contains priorities 0, 1, 6, 3, 4. The shortest distances to each node are shown.](image)
Dijkstra’s Algorithm Example

While priority queue is not empty:

$u = \text{vertex dequeued from priority queue}$
Dijkstra Example

Priority Queue

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

Shortest Distances

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Graph:

- Nodes: A, B, C
- Edges:
 - A to B: 3
 - B to C: -2
 - A to C: 2
Dijkstra Example

Priority Queue

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

Shortest Distances

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Graph:
- A to B: 3
- A to C: 2
- B to C: -2
Dijkstra Example

Priority Queue

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Shortest Distances

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Dijkstra Example

Priority Queue

Shortest Distances
Dijkstra Example

Priority Queue

A	B	C

Shortest Distances

A	B	C
0 | 3 | 2
Dijkstra Example

Dijkstra’s doesn’t work with negative edge weights
Another Example

Priority Queue

A B C
0 ∞ ∞

Shortest Distances

A B C
? ? ?
Another Example

Priority Queue

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

Shortest Distances

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Another Example

Priority Queue

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>∞</td>
</tr>
</tbody>
</table>

Shortest Distances

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Another Example

Priority Queue

A B C
\[\infty\]

Shortest Distances

A B C
0 1 \[?\]
Another Example

Priority Queue

A B C

Shortest Distances

A B C

0 1 ?
Another Example

Priority Queue

A B C

Shortest Distances

A B C

0 1 3
Another Example

Cycles are fine

Priority Queue
A B C

Shortest Distances
A B C
0 1 3
Why do we care about graphs?

- Facebook, LinkedIn
- Maps (Google Maps, GPS)
- The internet
- Puzzle configurations (Rubik’s cube, project 3)
Final Exam Information

• Next Wednesday (8/13), 3-6pm
• Last name A-H, Q-Z: 2050 VLSB
• Last name J-P: 100 GPB
• All lab and quiz material up to and including this Friday’s (balanced search trees)
• Review Session
 – Sunday (8/10), 1-3pm in 100 GPB
Sorting

• Given a collection of elements, sort them from smallest to largest
Terminology: Stable

- Elements with the same value are ordered the same before and after sorting.

Original: 1 2 3 1 2 3 3 4
Sorted (stable): 1 1 2 2 3 3 3 4
Sorted (unstable): 1 1 2 2 3 3 3 4
Terminology: In-place

- Only uses $O(1)$ additional space
 - E.g. doesn’t copy all contents of input array into a new array
- Used to describe any algorithm, not just sorting algorithms
Selection Sort

for $i = 0, 1, \ldots, (n-1)$:

Search positions i to $(n-1)$ for smallest element
Swap with element at position i

- Stable, in-place
- Best / average / worst case running time: $O(n^2)$ for a list with n elements
Selection Sort Example

Current index

Smallest found this iteration

Already sorted

Bubble Sort

for i = 0, 1, ..., (n-1):
 Go through the first n–i elements
 Swap pairs of adjacent elements that are out of order

- Stable, in-place
- Average / worst case running time: $O(n^2)$ for a list with n elements
- Best case running time: $O(n)$ with optimization
Bubble Sort Example

6 5 3 1 8 7 2 4

http://en.wikipedia.org/wiki/Bubble_sort#mediaviewer/File:Bubble-sort-example-300px.gif
Insertion Sort

for $i = 0, 1, \ldots, (n-1)$:

Take element at index i

Insert it into the correct location in the sorted sublist consisting of the first $i+1$ elements

• Stable, in-place
• Average / worst case running time: $O(n^2)$ for a list with n elements
• Best case running time: $O(n)$
Insertion Sort Example

6 5 3 1 8 7 2 4
Insertion Sort Example

5 6 3 1 8 7 2 4
Insertion Sort Example

5 6 1 8 7 2 4
Insertion Sort Example

5 6 1 8 7 2 4

3
Insertion Sort Example

[Diagram of an array with numbers 1, 3, 5, 6, 8, 7, 2, 4, with 7 highlighted]
Insertion Sort Example

![Insertion Sort Diagram](image-url)
Insertion Sort Example

1 2 3 4 5 6 7 8
Insertion Sort Example
Faster Sorting

• Divide and Conquer:
 – Solve large problem by splitting it into smaller instances of same problem
Heap Sort

• (From last lecture)
• Create heap
• Remove smallest element from heap, one at a time

• NOT Stable
• In-place*
• Best / average / worst case running time: $O(n \log n)$ for a list with n elements
In-place Heap Sort
In-place Heap Sort

X 7 3 6 5 8 9 1
In-place Heap Sort

![Heap Sort Diagram]
In-place Heap Sort
In-place Heap Sort

Diagram of a heap with elements 5, 7, 6, 9, 8 in a binary tree structure. The elements are arranged in a way that satisfies the heap property, where each parent node is greater than or equal to its children.
In-place Heap Sort

Etc...
In-place Heap Sort

X 9 8 7 6 5 3 1
Merge Sort

- Base case: list of 1 element is already sorted
- Recursively sort left and right halves
- Merge

- Stable*
- Can be done in-place (not efficient)
- Best / average / worst case running time: $O(n \log n)$ for a list with n elements
Merge Sort Running Time

log \(n \) depth
Merge Sort Running Time

1 merge: lists of $\frac{n}{2}$ elements each

2 merges: lists of $\frac{n}{4}$ elements each

\vdots

$\frac{n}{2}$ merges: lists of 1 element each
Merge Sort Running Time

1 merge: lists of $\frac{n}{2}$ elements each $O(n)$

2 merges: lists of $\frac{n}{4}$ elements each $O(n)$

⋮

$\frac{n}{2}$ merges: lists of 1 element each $O(n)$

$\log n$ depth
Merge Sort Running Time

1 merge: lists of $\frac{n}{2}$ elements each $\mathcal{O}(n)$

2 merges: lists of $\frac{n}{4}$ elements each $\mathcal{O}(n)$

\vdots

$\frac{n}{2}$ merges: lists of 1 element each $\mathcal{O}(n)$

$\mathcal{O}(n \log n)$
Quick Sort

- Base case: list of 1 element is already sorted
- Choose one of the list elements as the pivot
- Partition list into elements that are less than pivot and elements that are greater than pivot
- Recursively do this on both partitions

- Stable, in-place
- Best / average case running time: $O(n \log n)$ where n is number of elements in input list
- Worst case running time: $O(n^2)$
Quick Sort Running Time

6 3 2 9 4 5 1 11 10 7 8

3 2 4 5 1

Pivot

2 1 3 4 5 6 7 8 9 11 10

log n depth
Quick Sort Running Time

1 2 3 4 5 6 7 8

Pivot

Pivot

1

2

3 4 5 6 7 8

...
Quick Sort Running Time

• All partitioning at each depth level: $O(n)$ time
• Number of depth levels: $O(\log n)$ to $O(n)$
• Total running time: $O(n \log n)$ to $O(n^2)$
Sorting in practice...

- Base case: use insertion sort on smaller lists
- Quick sort is fastest on randomized lists
- Choosing a pivot (options):
 - Choose first element of list
 - Calculate median
 - Pick 3 elements at random and take median
Java’s Arrays.sort

• Dual-pivot quicksort!
 – Vladimir Yaroslavskiy, 2009
 – Used in Java’s Arrays.sort starting with Java 7 (2011)
Comparison Sorts

- Compares elements
- Given items a and b:
 - $a > b$?
 - $a < b$?
 - $(a == b)?$
- All sorting algorithms we’ve learned so far
 - Selection, bubble, insertion, merge, heap, quick...
Comparison Sorts:
Number of Comparisons (Lower Bound)

• Each comparison distinguishes between 2 possibilities
 – \(f(n) \) comparisons \(\rightarrow 2^{f(n)} \) list permutations
• \(n \) elements: \(n! \) possible list permutations
 – \(2^{f(n)} \geq n! \)
 – \(f(n) \geq \log_2(n!) \)
Comparison Sorts

• Lower bound on number of comparisons: $\log_2(n!)$
• Want to show: $\log_2(n!) \in \Omega(n \log_2 n)$
Want to show: $\log_2(n!) \in \Omega(n \log_2 n)$

- $\log_2(n!)$

 $= \log_2 n + \log_2 (n - 1) + \cdots + \log_2 (2)$

- $> \log_2 n + \log_2 (n - 1) + \cdots + \log_2 \frac{n}{2}$

- $> \log_2 \frac{n}{2} + \log_2 \frac{n}{2} + \cdots + \log_2 \frac{n}{2} = \frac{n}{2} \log_2 \frac{n}{2}$
Want to show: $\log_2(n!) \in \Omega(n \log_2 n)$

• $\log_2(n!) > \frac{n}{2} \log_2 \frac{n}{2}$
 $\in \Theta(n \log_2 \frac{n}{2})$
 $\in \Theta(n \log_2 n - n \log_2 2)$
 $\in \Theta(n \log_2 n)$

• $\log_2(n!) \in \Omega(n \log_2 n)$

• Lower bound on number of comparisons:
 $\Omega(n \log_2 n)$
Comparison Sorts

Lower bound on number of comparisons:
\(\Omega(n \log_2 n) \)
Non-comparison Sorts

We can do better
Counting Sort

• Input:
 – Large unsorted list of n integers in the range $[0, k]$ (hopefully $k \ll n$)

• Solution:
 – Create an int array of size k
 – Traverse input list
 – Increment int at array position i whenever you come across i
Counting Sort Example

Input list

4 1 2 1

Counter array

0 0 0 0 0 0

0 1 2 3 4
Counting Sort Example

Input list

4 1 2 1

Counter array

0 0 0 0 1

0 1 2 3 4
Counting Sort Example

Input list

4 1 2 1

Counter array

0 0 0 0 1

0 1 2 3 4
Counting Sort Example

Input list

4 1 2 1

Counter array

0 1 0 0 1

0 1 2 3 4
Counting Sort Example

Input list

4 1 2 1

Counter array

0 1 0 0 1

0 1 2 3 4
Counting Sort Example

Input list

4 1 2 1

Counter array

0 1 1 0 1

0 1 2 3 4
Counting Sort Example

Input list:

```
4 1 2 1
```

Counter array:

```
0 1 1 0 1
```

0 1 2 3 4
Counting Sort Example

Input list

4 1 2 1

Counter array

0 2 1 0 1

0 1 2 3 4
Counting Sort Example

Output:

Counter array

[0, 2, 1, 0, 1]
Counting Sort Example

Output:
Counting Sort Example

Output: 1 1
Counting Sort Example

Output: 1 1

Counter array

0 2 1 0 1
0 1 2 3 4
Counting Sort Example

Output: 1 1 2
Counting Sort Example

Output: 1 1 2
Counting Sort Example

Output: 1 1 2

Counter array

0 2 1 0 1

0 1 2 3 4
Counting Sort Example

Output: 1 1 2 4
Counting Sort Example

Output: 1 1 2 4

Counter array
Counting Sort

- Best / average / worst case running time: $O(n + k)$
- Stable? N/A
- In-place? No
Radix Sort (version 1)

• Base case: list of only 1 element is already sorted
• Put elements into buckets according to most significant digit
• Recursively sort each bucket on next most significant digit (and so forth)
Radix Sort v1 Example

• Input list: 49, 26, 32, 39, 65, 61, 33, 31
Radix Sort v1 Example

• Input list: 49, 26, 32, 39, 61, 65, 33, 21
• Put elements into buckets according to most significant digit
Radix Sort v1 Example

- Input list: 49, 26, 32, 39, 61, 65, 33, 21
- Recursively sort on next most significant digit(s)
Radix Sort v1 Example

- Input list: 49, 26, 32, 39, 61, 65, 33, 21
- Output sorted list:
 21, 26, 32, 33, 39, 49, 61, 65
Radix Sort (version 2)

• Base case: list of size 1 is already sorted
• Put elements into buckets according to least significant digit
• Output all of the elements to a list:
 – In bucket order
 – In the order they were added to each bucket
• Repeat with next digit until you reach the most significant digit
Radix Sort v2 Example

- Input list: 49, 26, 32, 39, 61, 65, 33, 21
Radix Sort v2 Example

- Input list: 49, 26, 32, 39, 61, 65, 33, 21
- Put elements into buckets according to least significant digit
Radix Sort v2 Example

• Output all of the elements to a list:
 – In bucket order
 – In the order they were added to each bucket

• Output: 61, 21, 32, 33, 65, 26, 49, 39
Radix Sort v2 Example

- Input: 61, 21, 32, 33, 65, 26, 49, 39
- Repeat with next digit
Radix Sort v2 Example

- Input: 61, 21, 32, 33, 65, 26, 49, 39
- Output: 21, 26, 32, 33, 39, 49, 61, 65
Radix Sort Running Time

- Best / average / worst case: $O((n + b)k)$
 - n: Number of elements in input list
 - b: Number of buckets
 - k: Number of digits of largest number
- Usually, $b \ll n$, so running time can be reduced to: $O(nk)$
- If k is also small (basically a constant), running time can be reduced to: $O(n)$
 - Sorting Java ints: $b=2, k = 32$
Good luck next week.