Example: Representing 1/3 in MIPS

\[
1/3 = 0.33333_{10} = 0.25 + 0.0625 + 0.015625 + 0.00390625 + \ldots = 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + \ldots = 0.0101010101_{2} * 2^{0} = 1.0101010101_{2} * 2^{-2}
\]

\[
\text{Sign: } 0, \quad \text{Exponent } = -2 + 127 = 125 = 01111101, \quad \text{Significand } = 0101010101_{2}
\]

Representation for ± \(\infty\)

- In FP, divide by 0 should produce ± \(\infty\), not overflow.
- Why?
 - OK to do further computations with \(\infty\)
 - E.g., \(X/0 > Y\) may be a valid comparison
 - Ask math majors
- IEEE 754 represents \(\pm \infty\)
 - Most positive exponent reserved for \(\infty\)
 - Significands all zeroes

Representation for 0

- Represent 0?
 - Exponent all zeroes
 - Significand all zeroes too
 - What about sign?
 - +0: 0 0000000 00000000000000000000000
 - -0: 1 0000000 00000000000000000000000
- Why two zeroes?
 - Helps in some limit comparisons
 - Ask math majors

Special Numbers

- What have we defined so far? (Single Precision

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>???</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>+/- fl. pt. #</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>+/- (\infty)</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>???</td>
</tr>
</tbody>
</table>

- Professor Kahan had clever ideas; “Waste not, want not”
 - Exp=0,255 & Sig!=0 ...

Representation for Not a Number

- What is sqrt(-4.0) or 0/0?
 - If \(\infty\) not an error, these shouldn’t be either.
 - Called Not a Number (NaN)
 - Exponent = 255, Significand nonzero

- Why is this useful?
 - Hope NaNs help with debugging?
 - They contaminate: op(NaN, X) = NaN
Representation for Denoms (1/2)

- **Problem:** There's a gap among representable FP numbers around 0
 - Smallest representable pos num: \(a = 1.0 \ldots 2 \cdot 2^{-126}\)
 - Second smallest representable pos num: \(b = 1.000 \ldots 1 \cdot 2^{-126} = 2^{-126} + 2^{-149}\)

 \[
 a - 0 = 2^{-126} \\
 b - a = 2^{-149}
 \]

 Gaps!

 Normalization and implicit 1 is to blame!

 RQ answer!

Representation for Denoms (2/2)

- **Solution:**
 - We still haven't used Exponent = 0, Significand nonzero
 - Denormalized number: no leading 1, implicit exponent = -126.
 - Smallest representable pos num: \(a = 2^{149}\)
 - Second smallest representable pos num: \(b = 2^{148}\)

 \[
 a - 0 = 2^{-126} \\
 b - a = 2^{-149}
 \]

 RQ answer!

Rounding

- Math on real numbers ⇒ we worry about rounding to fit result in the significant field. **RQ answer!**
- FP hardware carries 2 extra bits of precision, and rounds for proper value
- Rounding occurs when converting...
 - double to single precision
 - floating point # to an integer

IEEE Four Rounding Modes

- Round towards \(+\infty\)
 - ALWAYS round “up”: 2.1 ⇒ 3, -2.1 ⇒ -2
- Round towards \(-\infty\)
 - ALWAYS round “down”: 1.9 ⇒ 1, -1.9 ⇒ -2
- Truncate
 - Just drop the last bits (round towards 0)
- Round to (nearest) even (default)
 - Normal rounding, almost: 2.5 ⇒ 2, 3.5 ⇒ 4
 - Like you learned in grade school
 - Insures fairness on calculation
 - Half the time we round up, other half down

Integer Multiplication (1/3)

- Paper and pencil example (unsigned):

 \[
 \begin{array}{c}
 \text{Multiplicand} \\
 1000 \\
 \times 9
 \end{array}
 \begin{array}{c}
 100 \\
 000 \\
 9000 \\
 10000
 \end{array}
 \]

 \[
 \begin{array}{c}
 m \text{ bits} \times n \text{ bits} = m + n \text{ bit product}
 \end{array}
 \]

Integer Multiplication (2/3)

- In MIPS, we multiply registers, so:
 - 32-bit value x 32-bit value = 64-bit value
- Syntax of Multiplication (signed):
 - mult register1, register2
 - Multiplies 32-bit values in those registers & puts 64-bit product in special result regs:
 - puts product upper half in hi, lower half in lo
 - hi and lo are 2 registers separate from the 32 general purpose registers
 - Use mfhi register & mflo register to move from hi, lo to another register
Integer Multiplication (3/3)

- **Example:**
 - In C: \(a = b \times c;\)
 - In MIPS:
 - let \(b\) be \(s2;\) let \(c\) be \(s3;\) and let \(a\) be \(s0\) and \(s1\) (since it may be up to 64 bits)
 - \text{mult} \, s2, s3 \quad \# \text{b} \times \text{c}
 - \text{mfhi} \, s0 \quad \# \text{upper half of product into } s0
 - \text{mflo} \, s1 \quad \# \text{lower half of product into } s1
 - **Note:** Often, we only care about the lower half of the product.

Integer Division (1/2)

- **Paper and pencil example (unsigned):**

 \[
 \begin{array}{c|c}
 \text{Divisor} & 1000 \\
 \text{Dividend} & 10101010 \\
 \text{Quotient} & 101 \\
 \text{Remainder} & 1000 \\
 \end{array}
 \]

- **Example in C:**
 \[a = c / d;\]
 \[b = c \mod d;\]

Integer Division (2/2)

- **Syntax of Division (signed):**
 - \text{div} \, \text{reg1}, \text{reg2}
 - Divides 32-bit register 1 by 32-bit register 2:
 - puts remainder of division in hi, quotient in lo
 - **Example in C:**

 - In MIPS:
 - \text{div} \, s2, s3 \quad \# \text{c} / \text{d}
 - \text{mfhi} \, s0 \quad \# \text{get quotient}
 - \text{mflo} \, s1 \quad \# \text{get remainder}

Unsigned Instructions & Overflow

- MIPS also has versions of \text{mult}, \text{div} for unsigned operands:
 - \text{mulu}
 - \text{divu}
 - Determines whether or not the product and quotient are changed if the operands are signed or unsigned.

 • **MIPS does not check overflow on ANY signed/unsigned multiply, divide instr**
 - Up to the software to check hi

FP Addition & Subtraction

- Much more difficult than with integers (can’t just add significands)
 - **How do we do it?**
 - De-normalize to match larger exponent
 - Add significands to get resulting one
 - Normalize (& check for under/overflow)
 - Round if needed (may need to renormalize)
 - If signs ≠, do a subtract. (Subtract similar)
 - If signs ≠ for add (or = for sub), what’s ans sign?
 - **Question:** How do we integrate this into the integer arithmetic unit? [Answer: We don’t!]

MIPS Floating Point Architecture (1/4)

- Separate floating point instructions:
 - Single Precision:
 - \text{add.s}, \text{sub.s}, \text{mul.s}, \text{div.s}
 - Double Precision:
 - \text{add.d}, \text{sub.d}, \text{mul.d}, \text{div.d}

 - These are far more complicated than their integer counterparts
 - Can take much longer to execute
MIPS Floating Point Architecture (2/4)

• Problems:
 • Inefficient to have different instructions take vastly differing amounts of time.
 • Generally, a particular piece of data will not change FP \leftrightarrow Int within a program.
 - Only 1 type of instruction will be used on it.
 • Some programs do no FP calculations
 • It takes lots of hardware relative to integers to do FP fast

MIPS Floating Point Architecture (3/4)

• 1990 Solution: Make a completely separate chip that handles only FP.
 • Coprocessor 1: FP chip
 - contains 32 32-bit registers: $f0, f1, ...$
 - most of the registers specified in .s and .d instruction refer to this set
 - separate load and store: lwc1 and swc1 (“load word coprocessor 1”, “store ...”)
 - Double Precision: by convention, even/odd pair contain one DP FP number: $f0/f1, f2/f3, ..., f30/f31$
 - Even register is the name

MIPS Floating Point Architecture (4/4)

• 1990 Computer actually contains multiple separate chips:
 • Processor: handles all the normal stuff
 • Coprocessor 1: handles FP and only FP;
 • more coprocessors? Yes, later
 • Today, FP coprocessor integrated with CPU, or cheap chips may leave out FP HW

Instructions to move data between main processor and coprocessors:
 • mfc0, mtc0, mfc1, mtc1, etc.

• Appendix contains many more FP ops

Peer Instruction

1. Converting float \rightarrow int \rightarrow float produces same float number
2. Converting int \rightarrow float \rightarrow int produces same int number
3. FP add is associative: $(x+y)+z = x+(y+z)$

As Promised, the way to remember #s

• What is 2^{34}? How many bits addresses (i.e., what’s ceil log₂ = log₁₀ of) 2.5 TB?
 • Answer! 2^{XY} means...
 X=0 \Rightarrow 0 Y=0 \Rightarrow 1
 X=1 \Rightarrow Kilo \sim 10³ Y=1 \Rightarrow 2
 X=2 \Rightarrow Mega \sim 10⁶ Y=2 \Rightarrow 4
 X=3 \Rightarrow Giga \sim 10⁹ Y=3 \Rightarrow 8
 X=4 \Rightarrow Terra \sim 10¹² Y=4 \Rightarrow 16
 X=5 \Rightarrow Peta \sim 10¹⁵ Y=5 \Rightarrow 32
 X=6 \Rightarrow Exa \sim 10¹⁸ Y=6 \Rightarrow 64
 X=7 \Rightarrow Zetta \sim 10²¹ Y=7 \Rightarrow 128
 X=8 \Rightarrow Yotta \sim 10²⁴ Y=8 \Rightarrow 256
 X=9 \Rightarrow 512

MEMORIZE!

“And in conclusion…”

• Reserve exponents, significands:
<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>Denorm</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>+/- fl. pt. #</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>+/- infinite</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>NaN</td>
</tr>
</tbody>
</table>

• Integer multi, div uses hi, lo regs
 • mfhi and mflo copies out.

• Four rounding modes (to even default)

• MIPS FL ops complicated, expensive