Review...

- ISA is very important abstraction layer
 - Contract between HW and SW
- Basic building blocks are logic gates
- Clocks control pulse of our circuits
- Voltages are analog, quantized to 0/1
- Circuit delays are fact of life
- Two types
 - Stateless Combinational Logic (&, |, ~), in which output is function of input only
 - State circuits (e.g., registers)

Accumulator Example

Want: \[S = 0; \text{ for } i \text{ from } 0 \text{ to } n-1 \]
\[S = S + X_i \]

First try... Does this work?

Nope!
Reason #1... What is there to control the next iteration of the 'for' loop?
Reason #2... How do we say: "S=0"?

Second try... How about this? Yep!

Register Details... What's in it anyway?

- \(n \) instances of a "Flip-Flop", called that because the output flips and flops between 0,1
- D is "data"
- Q is "output"
- Also called "d-q Flip-Flop", "d-type Flip-Flop"
What’s the timing of a Flip-flop? (1/2)

• Edge-triggered d-type flip-flop
 • This one is “positive edge-triggered”
 • “On the rising edge of the clock, the input d is sampled and transferred to the output. At all other times, the input d is ignored.”

What’s the timing of a Flip-flop? (2/2)

• Edge-triggered d-type flip-flop
 • This one is “positive edge-triggered”
 • “On the rising edge of the clock, the input d is sampled and transferred to the output. At all other times, the input d is ignored.”

Accumulator Revisited (proper timing 1/2)

Accumulator Revisited (proper timing 2/2)

Pipelining to improve performance (1/2)

Pipelining to improve performance (2/2)
Finite State Machines Introduction

State Elements: Circuits That Remember

Garcia, Fall 2004
© UCB

Finite State Machine Example: 3 ones...

Truth table...

Draw the FSM...

Hardware Implementation of FSM

General Model for Synchronous Systems

Peer Instruction

A. HW feedback akin to SW recursion
B. We can implement a D-Q flipflop as simple CL (And, Or, Not gates)
C. You can build a FSM to signal when an equal number of 0s and 1s has appeared in the input.

And In conclusion...

• We use feedback to maintain state
• Register files used to build memories
• D-FlipFlops used to build Register files
• Clocks tell us when D-FlipFlops change
 · Setup and Hold times important
• We pipeline big-delay CL for faster clock
• Finite State Machines extremely useful
 · You’ll see them in HW classes (150, 152) & 164