Japan's growing elderly population will be able to buy companionship in the form of a robot, programmed to provide just enough small talk to keep them from going senile. Snuggling Ifbot, dressed in an astronaut suit with a glowing face, has the conversation ability of a five-year-old, the language level needed to stimulate the brains of senior citizens.
Review

• Protocol suites allow heterogeneous networking
 • Another form of principle of abstraction
 • Protocols \Rightarrow operation in presence of failures
 • Standardization key for LAN, WAN

• Integrated circuit ("Moore’s Law") revolutionizing network switches as well as processors
 • Switch just a specialized computer

• Trend from shared to switched networks to get faster links and scalable bandwidth
Magnetic Disks

- **Purpose:**
 - Long-term, nonvolatile, inexpensive storage for files
 - Large, inexpensive, slow level in the memory hierarchy (discuss later)
Photo of Disk Head, Arm, Actuator

- Spindle
- Arm
- Head
- Actuator
- Platters (12)
Disk Device Terminology

- Several platters, with information recorded magnetically on both surfaces (usually)

- Bits recorded in tracks, which in turn divided into sectors (e.g., 512 Bytes)

- Actuator moves head (end of arm) over track ("seek"), wait for sector rotate under head, then read or write
Disk Device Performance

- Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead

- Seek Time? depends on no. tracks move arm, seek speed of disk
- Rotation Time? depends on speed disk rotates, how far sector is from head
- Transfer Time? depends on data rate (bandwidth) of disk (bit density), size of request
Data Rate: Inner vs. Outer Tracks

• To keep things simple, originally same # of sectors/track
 • Since outer track longer, lower bits per inch

• Competition decided to keep bits/inch (BPI) high for all tracks ("constant bit density")
 • More capacity per disk
 • More sectors per track towards edge
 • Since disk spins at constant speed, outer tracks have faster data rate

• Bandwidth outer track 1.7X inner track!
Disk Performance Model /Trends

- Capacity: + 100%/year \((2X / 1.0 \text{ yrs})\)
 Over time, grown so fast that # of platters has reduced
 (some even use only 1 now!)

- Transfer rate (BW): + 40%/yr \((2X / 2 \text{ yrs})\)

- Rotation+Seek time: – 8%/yr \((1/2 \text{ in 10 yrs})\)

- Areal Density
 - Bits recorded along a track: \textbf{Bits/Inch} (BPI)
 - # of tracks per surface: \textbf{Tracks/Inch} (TPI)
 - We care about bit density per unit area \textbf{Bits/Inch}^2
 - Called \textbf{Areal Density} = BPI x TPI

- \textbf{MB/$: > 100%/year} \((2X / 1.0 \text{ yrs})\)
 - Fewer chips + areal density
Disk History (IBM)

Data density
Mibit/sq. in.
Capacity of Unit Shown in Mibytes

1973:
1.7 Mibit/sq. in
0.14 GiBytes

1979:
7.7 Mibit/sq. in
2.3 GiBytes

“Makers of disk drives crowd even more data into even smaller spaces”
Disk History

1989:
63 Mibit/sq. in
60 GiBytes

1997:
1450 Mibit/sq. in
2.3 GiBytes

1997:
3090 Mibit/sq. in
8.1 GiBytes

“Makers of disk drives crowd even more data into even smaller spaces”
Historical Perspective

- Form factor and capacity drives market, more than performance
- 1970s: Mainframes ⇒ 14" diam. disks
- 1980s: Minicomputers, Servers ⇒ 8", 5.25" diam. disks
- Late 1980s/Early 1990s:
 - Pizzabox PCs ⇒ 3.5 inch diameter disks
 - Laptops, notebooks ⇒ 2.5 inch disks
 - Palmtops didn’t use disks, so 1.8 inch diameter disks didn’t make it
State of the Art: Barracuda 7200.7 (2004)

- 200 GB, 3.5-inch disk
- 7200 RPM; Serial ATA
- 2 platters, 4 surfaces
- 8 watts (idle)
- 8.5 ms avg. seek
- 32 to 58 MB/s Xfer rate
- $125 = $0.625 / GB

source: www.seagate.com;
1 inch disk drive!

- **2004 Hitachi Microdrive:**
 - 1.7” x 1.4” x 0.2”
 - 4 GB, 3600 RPM, 4-7 MB/s, 12 ms seek
 - Digital cameras, PalmPC

- **2006 MicroDrive?**
 - 16 GB, 10 MB/s!
 - Assuming past trends continue
Use Arrays of Small Disks…

- Katz and Patterson asked in 1987:
 - Can smaller disks be used to close gap in performance between disks and CPUs?

Conventional:
4 disk designs

- 3.5”
- 5.25”
- 10”
- 14”

Disk Array:
1 disk design

- 3.5”

Low End → High End
Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)

<table>
<thead>
<tr>
<th></th>
<th>IBM 3390K</th>
<th>IBM 3.5" 0061</th>
<th>x70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>20 GBytes</td>
<td>320 MBytes</td>
<td>23 GBytes</td>
</tr>
<tr>
<td>Volume</td>
<td>97 cu. ft.</td>
<td>0.1 cu. ft.</td>
<td>11 cu. ft.</td>
</tr>
<tr>
<td>Power</td>
<td>3 KW</td>
<td>11 W</td>
<td>1 KW</td>
</tr>
<tr>
<td>Data Rate</td>
<td>15 MB/s</td>
<td>1.5 MB/s</td>
<td>120 MB/s</td>
</tr>
<tr>
<td>I/O Rate</td>
<td>600 I/Os/s</td>
<td>55 I/Os/s</td>
<td>3900 I/Os/s</td>
</tr>
<tr>
<td>MTTF</td>
<td>250 KHrs</td>
<td>50 KHrs</td>
<td>??? Hrs</td>
</tr>
<tr>
<td>Cost</td>
<td>$250K</td>
<td>$2K</td>
<td>$150K</td>
</tr>
</tbody>
</table>

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, **but what about reliability?**
Array Reliability

- **Reliability** - whether or not a component has failed
 - measured as Mean Time To Failure (MTTF)

- Reliability of N disks = Reliability of 1 Disk ÷ N (assuming failures independent)
 - 50,000 Hours ÷ 70 disks = 700 hour

- Disk system MTTF:
 Drops from 6 years to 1 month!

- Disk arrays too unreliable to be useful!
Redundant Arrays of (Inexpensive) Disks

- Files are “striped” across multiple disks
- Redundancy yields high data availability
 - **Availability**: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - Capacity penalty to store redundant info
 - Bandwidth penalty to update redundant info
Berkeley History, RAID-I

• RAID-I (1989)
 • Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25-inch SCSI disks and specialized disk striping software

• Today RAID is > $27 billion dollar industry, 80% nonPC disks sold in RAIDs
“RAID 0”: No redundancy = “AID”

- Assume have 4 disks of data for this example, organized in blocks
- Large accesses faster since transfer from several disks at once

This and next 5 slides from RAID.edu, http://www.acnc.com/04_01_00.html
RAID 1: Mirror data

- Each disk is fully duplicated onto its "mirror"
 - Very high availability can be achieved
- Bandwidth reduced on write:
 - 1 Logical write = 2 physical writes
- Most expensive solution: 100% capacity overhead
RAID 3: Parity

- Parity computed across group to protect against hard disk failures, stored in P disk.
- Logically, a single high capacity, high transfer rate disk.
- 25% capacity cost for parity in this example vs. 100% for RAID 1 (5 disks vs. 8 disks).
RAID 4: parity plus small sized accesses

- RAID 3 relies on parity disk to discover errors on Read
- But every sector has an error detection field
- Rely on error detection field to catch errors on read, not on the parity disk
- Allows small independent reads to different disks simultaneously
Inspiration for RAID 5

• Small writes (write to one disk):
 • Option 1: read other data disks, create new sum and write to Parity Disk (access all disks)
 • Option 2: since P has old sum, compare old data to new data, add the difference to P:
 1 logical write = 2 physical reads + 2 physical writes to 2 disks

• Parity Disk is bottleneck for Small writes:
 Write to A0, B1 => both write to P disk

![Diagram of RAID 5 with disks A0, A1, B0, B1, C0, C1, D0, D1, and P representing the Parity disk.]}
RAID 5: Rotated Parity, faster small writes

- Independent writes possible because of interleaved parity
 - Example: write to A0, B1 uses disks 0, 1, 4, 5, so can proceed in parallel
 - Still 1 small write = 4 physical disk accesses
1. RAID 1 (mirror) and 5 (rotated parity) help with performance and availability

2. RAID 1 has higher cost than RAID 5

3. Small writes on RAID 5 are slower than on RAID 1
“And In conclusion…”

- Magnetic Disks continue rapid advance: 60%/yr capacity, 40%/yr bandwidth, slow on seek, rotation improvements, MB/$ improving 100%/yr?
 - Designs to fit high volume form factor

- RAID
 - Higher performance with more disk arms per $
 - Adds option for small # of extra disks
 - Today RAID is > $27 billion dollar industry, 80% nonPC disks sold in RAIDs; started at Cal