inst.eecs.berkeley.edu/~cs61c **CS61C : Machine Structures**

Lecture #27 **Performance II & Summary**

2005-12-07

There is one handout today at the front and back of the room!

Lecturer PSOE, new dad Dan Garcia

www.cs.berkeley.edu/~ddgarcia

The ultimate gift under the tree? \Rightarrow

Since it's the holiday season,

it's time to to consider what would be the best gift for a CS61C student. Nothing says " love you" like a \$2,300 81-game retro system, available today @ Costco. Xbox360 who? www.costco.com/Browse/Product.aspx?prodid=110981

CS61C L27 Performance II & Summary (1) Garcia, Fall 2005 © UCB

Review

• RAID

- Motivation: In the 1980s, there were 2 classes of drives: expensive, big for enterprises and small for PCs. They thought "make one big out of many small!"
- Higher performance with more disk arms/\$, adds option for small # of extra disks (the <u>R</u>)
- Started @ Cal by CS Profs Katz & Patterson
- Latency v. Throughput
- Performance doesn't depend on any single factor: need Instruction Count, Clocks Per Instruction (CPI) and Clock Rate to get valid estimations
- User Time: time user waits for program to execute: depends heavily on how OS switches between tasks
- CPU Time: time spent executing a single program: depends solely on processor design (datapath, pipelining effectiveness, caches, etc.)

What Programs Measure for Comparison?

- Ideally run typical programs with typical input before purchase, or before even build machine
 - Called a "workload"; For example:
 - Engineer uses compiler, spreadsheet
 - Author uses word processor, drawing program, compression software
- In some situations its hard to do
 - Don't have access to machine to "benchmark" before purchase
 - Don't know workload in future
- Next: benchmarks & PC-Mac showdown!

CS61C L27 Performance II & Summary (3)

Benchmarks

- Obviously, apparent speed of processor depends on code used to test it
- Need industry standards so that different processors can be fairly compared
- Companies exist that create these benchmarks: "typical" code used to evaluate systems
- Need to be changed every 2 or 3 years since designers could (and do!) target for these standard benchmarks

CS61C L27 Performance II & Summary (4)

Example Standardized Benchmarks (1/2)

- Standard Performance Evaluation Corporation (SPEC) SPEC CPU2000
 - CINT2000 12 integer (gzip, gcc, crafty, perl, ...)
 - CFP2000 14 floating-point (swim, mesa, art, ...)
 - All relative to base machine Sun 300MHz 256Mb-RAM Ultra5_10, which gets score of 100
 - •www.spec.org/osg/cpu2000/
 - They measure
 - System speed (SPECint2000)
 - System throughput (SPECint_rate2000)

Example Standardized Benchmarks (2/2)

• SPEC

- Benchmarks distributed in source code
- Members of consortium select workload
 - 30+ companies, 40+ universities
- Compiler, machine designers target benchmarks, so try to change every 3 years
- The last benchmark released was SPEC 2000

- They are still finalizing SPEC 2005

CINT2000)		<u>CFP2000</u>		
gzip	с	Compression	wupwise	Fortran77	Physics / Quantum Chromodynamics
vpr	с	FPGA Circuit Placement and	swim	Fortran77	Shallow Water Modeling
Routing			mgrid	Fortran77	Multi-grid Solver: 3D Potential Field
acc	с	C Programming Language Compiler	applu	Fortran77	Parabolic / Elliptic Partial Diff Equations
mcf	ĉ	Combinatorial Optimization	mesa	С	3-D Graphics Library
orafty	ĉ	Came Playing: Chess	galgel	Fortran90	Computational Fluid Dynamics
Darser	c	Word Processing	art	С	Image Recognition / Neural Networks
parser	стт С	Computer Vigualization	equake	С	Seismic Wave Propagation Simulation
eon	C++ C		facerec	Fortran90	Image Processing: Face Recognition
peribilik		Cheve Theorem Tatesmuster	ammp	С	Computational Chemistry
gap	C a	Group Theory, Interpreter	lucas	Fortran90	Number Theory / Primality Testing
vortex	C	Object-oriented Database	fma3d	Fortran90	Finite-element Crash Simulation
bzip2	C	Compression	sixtrack	Fortran77	High Energy Nuclear Physics Accelerator Design
twolf	С	Place and Route Simulator	apsi	Fortran77	Meteorology: Pollutant Distribution
CS61C L2	27 Per	formance II & Summary (6)			Garcia, Fall 2005 © UCB

Example PC Workload Benchmark

PCs: Ziff-Davis Benchmark Suite

- "Business Winstone is a system-level, application-based benchmark that measures a PC's overall performance when running today's top-selling Windows-based 32-bit applications... it doesn't mimic what these packages do; it runs real applications through a series of scripted activities and uses the time a PC takes to complete those activities to produce its performance scores.
- Also tests for CDs, Content-creation, Audio, 3D graphics, battery life

http://www.etestinglabs.com/benchmarks/

- Good products created when have:
 - Good benchmarks
 - Good ways to summarize performance
- Given sales is a function of performance relative to competition, should invest in improving product as reported by performance summary?
- If benchmarks/summary inadequate, then choose between improving product for real programs vs. improving product to get more sales; Sales almost always wins!

CS61C L27 Performance II & Summary (8)

Performance Evaluation: The Demo

If we're talking about performance, let's discuss the ways shady salespeople have fooled consumers (so that you don't get taken!)

- 5. Never let the user touch it
- 4. Only run the demo through a script
- 3. Run it on a stock machine in which "no expense was spared"
- 2. Preprocess all available data

CS61C L27 Performance II & Summary (9)

PC / PC / Mac Showdown!!! (1/4)

• PC

- 1 GHz Pentium III
- 256 Mb RAM
- 512KB L2 Cache
- No L3
- 133 MHz Bus
- 20 GB Disk
- 16MB VRAM
- PC 800MHz PIII

• Mac

- 800 MHz PowerbookG4
- 1 Gb RAM
 - 2 512Mb SODIMMs
- 32KB L1Inst, L1Data
- 256KB L2 Cache
- 1Mb L3 Cache
- 133 MHz Bus
- 40 GB Disk
- 32MB VRAM

Let's take a look at SPEC2000 and a simulation of a real-world application.

CS61C L27 Performance II & Summary (10)

PC / Mac Showdown!!! (2/4)

PC / Mac Showdown!!! (3/4)

PC / Mac Showdown!!! (4/4)

CS61C L27 Performance II & Summary (13)

Administrivia

- If you did well in CS3 or 61{A,B,C}
 (A- or above) and want to be on staff?
 - Usual path: Lab assistant \Rightarrow Reader \Rightarrow TA
 - Fill in form outside 367 Soda before first week of semester...
 - I strongly encourage anyone who gets above a
 B+ in the class to follow this path...
- Sp04 Final exam + solutions online!
- Final Review: 2005-12-11 @ 2pm in 10 Evans
- Final: 2005-12-17 @ 12:30pm in 2050 VLSB

• <u>Only</u> bring pen{,cil}s, two 8.5"x11" <u>handwritten</u> sheets + green. Leave backpacks, books, calculators, cells & pagers home!

CS61C L27 Performance II & Summary (14)

Upcoming Calendar

Week #	Mon	Wed	Thu Lab	Sat
#15 Last Week o' Classes	Performance	LAST CLASS Summary, Review, & HKN Evals	I/O Networking & 61C Feedback Survey	
#16 Sun 2pm Review 10 Evans	Performance competition due tonight @ midnight			FINAL EXAM SAT 12-17 @ 12:30pm- 3:30pm 2050 VLSB Performance awards

CS61C: So what's in it for me? (1st lecture)

Learn some of the big ideas in CS & engineering:

- 5 Classic components of a Computer
- Principle of abstraction, systems built as layers
- Data can be anything (integers, floating point, characters): a program determines what it is
- Stored program concept: instructions just data
- Compilation v. interpretation thru system layers
- Principle of Locality, exploited via a memory hierarchy (cache)
- Greater performance by exploiting parallelism (pipelining)

CS61C L27 Performance II & Summary (16)

Conventional Wisdom (CW) in Comp Arch

• Old CW: Power free, Transistors expensive

- New CW: Power expensive, Transistors free
 - Can put more on chip than can afford to turn on
- Old CW: Chips reliable internally, errors at pins
- New CW: \leq 65 nm \Rightarrow high error rates
- Old CW: CPU manufacturers minds closed
- New CW: Power wall + Memory gap = Brick wall
 - New idea-receptive environment
- Old CW: Uniprocessor performance 2X / 1.5 yrs
- New CW: 2X CPUs per socket / ~ 2 to 3 years
 - More simpler processors more power efficient

CS61C L27 Performance II & Summary (17)

Massively Parallel Socket

- Processor = new transistor?
 - Does it only help power/cost/performance?
- Intel 4004 (1971): 4-bit processor, 2312 transistors, 0.4 MHz, 10 µm PMOS, 11 mm² chip
- RISC II (1983): 32-bit, 5 stage pipeline, 40,760 transistors, 3 MHz, 3 μm NMOS, 60 mm² chip

4004 shrinks to ~ 1 mm² at 3 micron

- 125 mm² chip, 65 nm CMOS
 = 2312 RISC IIs + Icache + Dcache
 - RISC II shrinks to ~ 0.02 mm² at 65 nm
 - Caches via DRAM or 1 transistor SRAM (www.t-ram.com)?
 - Proximity Communication at > 1 TB/s ?
 - Ivan Sutherland @ Sun spending time in Berkeley!

20th vs. 21st Century IT Targets

- 20th Century Measure of Success
 - Performance (peak vs. delivered)
 - Cost (purchase cost vs. ownership cost, power)
- 21st Century Measure of Success? "SPUR"
 - Security
 - Privacy
 - Usability
 - Reliability
- Massive parallelism greater chance (this time) if
 - Measure of success is SPUR vs. only cost-perf
 - Uniprocessor performance improvement decelerates

- Need to revisit chronic unsolved problem
 - Parallel programming!!
- Implications for applications:
 - Computing power >>> CDC6600, Cray XMP (choose your favorite) on an economical die inside your watch, cell phone or PDA
 - On your body health monitoring
 - Google + library of congress on your PDA
- As devices continue to shrink...
 - The need for great HCI critical as ever!

Taking advantage of Cal Opportunities

"The Godfather answers all of life's questions" - Heard in "You've got Mail"

- Why are we the #2 Univ in the WORLD?
 - So says the 2004 ranking from the "Times Higher Education Supplement" Research, reseach, research!
 - Whether you want to go to grad school or industry, you need someone to vouch for vou! (as is the case with the Mob)
- Techniques
 - Find out what you like, do lots of web research (read published papers), hit OH of Prof, show enthusiasm & initiative

Dan's CS98/198 Opportunities Spring 2006

- GamesCrafters (Game Theory R & D)
 - We are developing SW, analysis on small 2-person games of no chance. (e.g., achi, connect-4, dotsand-boxes, etc.)
 - Req: A- in CS61C, Game Theory Interest
 - •http://GamesCrafters.berkeley.edu
- MS-DOS X (Mac Student Developers)
 - Learn to program Macintoshes. No requirements (other than Mac, interest)
 - •http://msdosx.berkeley.edu
- UCBUGG (Recreational Graphics)
 - Develop computer-generated images and animations.

•http://ucbugg.berkeley.edu

Penultimate slide: Thanks to the staff!

• TAs

- Head TA
 Jeremy Huddleston
- Zhangxi Tan
- Michael Le
- Navtej Sadhal

Readers

- Mario Tanev
- Mark Whitney

CS61C L27 Performance II & Summary (23)

The Future for Future Cal Alumni

- What's The Future?
- New Millennium
 - Internet, Wireless, Nanotechnology, ...
 - Rapid Changes in Technology
 - World's ... Best Education
 - Never Give Up!

"The best way to predict the future is to invent it" – Alan Kay

The Future is up to you!

CS61C L27 Performance II & Summary (24)