CS 61C: Great Ideas in Computer Architecture (Machine Structures)

Course Wrap-up
Instructors:
Randy H. Katz
David A. Patterson
http://inst.eecs.Berkeley.edu/~cs61c/fa10

Agenda
• Course Wrap-up (Randy)
• Administrivia
• Technology Break
• Berkeley Culture (Dave)

Great Ideas in Computer Architecture
✓ Layers of Representation/Interpretation
✓ Moore’s Law
✓ Principle of Locality/Memory Hierarchy
✓ Parallelism
✓ Performance Improvement
• Learning how to program in C is non-goal!
 – Check out http://inst.eecs.berkeley.edu/~selfpace/class/cs9c/
 – Since C doesn’t hide pointers and memory allocation, it is a
good language for illustrating architectural concepts and
abstracting from assembly language
 – Foundation for exploring parallelism and performance
improvement, though mechanisms and libraries for SIMD,
OpenMP, Map-Reduce, etc. exist for other languages

Levels of Representation/Interpretation
Moore's Law

Predicts: 2X Transistors / chip every 2 years

Gordon Moore
Intel Co-founder
B.S. Cal 1950!

Typical Memory Hierarchy

- Take advantage of the principle of locality to present the user with as much memory as is available in the cheapest technology at the speed offered by the fastest technology.

Memory Hierarchy

- Caches
 - 3Cs: Compulsory/Capacity/Conflict misses
 - Direct-mapped vs. Set-associative
 - Multi-level caches for fast clock + low miss rate
- Virtual Memory
 - Originally small physical memory that appears to be very large
 - Modern: provide isolation through separated address spaces

Forms of Parallelism

- Instruction Parallelism
 - Processor pipeline: multiple instructions in execution at the same time
- Task Parallelism
 - Synchronization primitives, openMP
 - Modern web services
- Data Parallelism
 - Map-Reduce, SIMD instruction set
 - Data and numerically intensive processing
Randy’s Course Summary

- As the field changes, cs61c has to change too!
- It is still about the software-hardware interface
 - Programming for performance!
 - Understanding the memory hierarchy and its impact on application performance
 - Unlocking the capabilities of the architecture for performance
 - Multicore programming and task parallelism
 - Special instructions
 - Special instruction sequences
- Thanks for being our guinea pigs this semester!
 - Wait until you interview for summer internships and tell the interviewers what you did this semester!

Agenda

- Course Wrap-Up (Randy)
- Administrivia
- Technology Break
- Berkeley Culture (Dave)

Administrivia

- Final Review: Mon Dec 6, 2-5 PM, 10 Evans
- Final: Mon Dec 13 8-11AM (220 Hearst Gym)
 - Like midterm: T/F, M/C, short answers
 - Whole Course: readings, lectures, projects, labs, hw
 - Emphasize 2nd half of 61C + midterm mistakes