Number Bases				
Decimal	Binary	Hex		
0	0000	0		
1	0001	1		
2	0010	2		
3	0011	3		
4	0100	4		
5	0101	5		
6	0110	6		
7	0111	7		
8	1000	8		
9	1001	9		
10	1010	А		
11	1011	В		
12	1100	С		
13	1101	D		
14	1110	Е		

1111

IEC	Prefixes
-----	----------

IEC Pre	EIIXES	
Name	Abbr	Factor
Kibi	Ki	$2^{10} = 1,024$
mebi	Mi	$2^{20} = 1,048,576$
gibi	Gi	$2^{30} = 1,073,741,824$
tebi	Ti	$2^{40} = 1,099,511,627,776$
pebi	Pi	$2^{50} = 1,125,899,906,842,624$
exbi	Ei	$2^{60} = 1,152,921,504,606,846,976$
Zebi	Zi	$2^{70} = 1,180,591,620,717,411,303,424$
yobi	Yi	$2^{80} = 1,208,925,819,614,629,174,706,176$

Exercises

15

1) Fill in the following table (implicit unsigned interpretation, since we hadn't done signs yet):

Decimal	Binary	Hex
31	0b0001 1111	0x1F
27	0b0001 1011	0x1B
17	0b0001 0001	0x11
127	0b0111 1111	0x7f
202	0b1100 1010	0xCA
255	0b1111 1111	0xFF

F

2) The Koozbanian language has 768 distinct symbols. What is the minimum number of bits needed to represent every symbol?

Ten! $2^9=512$ isn't enough, so we need $2^{10}=1024$.

3) Represent the following values in IEC format:

2¹⁸ **256 Kibi** 2³ **8** 2⁴³ **8 Tebi** 2²⁰ **1 Mebi**

4) Your awesome new computer has 1.5 TiB of byte-addressed memory (1.5Ti possible addresses). How many bits are needed to represent every address? With 41 bits we can represent $2^{41} = 2$ TebiThings, which is necessary to represent so

With 41 bits we can represent $2^{41} = 2$ TebiThings, which is necessary to represent so many addresses.