CS 61C: Great Ideas in Computer Architecture (Machine Structures)
Lecture 17 – Datacenters and Cloud Computing

Instructors:
Michael Franklin
Dan Garcia
http://inst.eecs.Berkeley.edu/~cs61c/fa11

Review
• Great Ideas in Computer Architecture
 1. Layers of Representation/Interpretation
 2. Moore’s Law
 3. Principle of Locality/Memory Hierarchy
 4. Parallelism
 5. Performance Measurement and Improvement
 6. Dependability via Redundancy

In the news
• Google disclosed Thursday that it continuously uses enough electricity to power 200,000 homes, but it says that in doing so, it also makes the planet greener.
• Search cost per day (per person) same as running a 60-watt bulb for 3 hours

Computer Eras: Mainframe 1950s-60s
"Big Iron": IBM, UNIVAC, ... build $1M computers for businesses => COBOL, Fortran, timesharing OS

Minicomputer Eras: 1970s
Using integrated circuits, Digital, HP... build $10k computers for labs, universities => C, UNIX OS

PC Era: Mid 1980s - Mid 2000s
Using microprocessors, Apple, IBM, ... build $1k computer for 1 person => Basic, Java, Windows OS
PostPC Era: Late 2000s - ??

Personal Mobile Devices (PMD): Relying on wireless networking, Apple, Nokia, ... build $500 smartphone and tablet computers for individuals

=> Objective C, Android OS

Cloud Computing: Using Local Area Networks, Amazon, Google, ... build $200M Warehouse Scale Computers with 100,000 servers for Internet Services for PMDs

=> MapReduce, Ruby on Rails

January 2011 AWS Instances & Prices

<table>
<thead>
<tr>
<th>Instance</th>
<th>Per Hour</th>
<th>Price</th>
<th>Compute Virtual Cores</th>
<th>Compute Unit/ Core</th>
<th>Memory (GB)</th>
<th>Disk (GB)</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Small</td>
<td>0.083</td>
<td>$0.11</td>
<td>1</td>
<td>1.00</td>
<td>1.7</td>
<td>160</td>
<td>32</td>
</tr>
<tr>
<td>Standard Large</td>
<td>0.240</td>
<td>$0.68</td>
<td>4</td>
<td>2.00</td>
<td>7.5</td>
<td>850</td>
<td>64</td>
</tr>
<tr>
<td>Standard Extra Large</td>
<td>0.510</td>
<td>$1.60</td>
<td>8</td>
<td>3.25</td>
<td>15.0</td>
<td>1690</td>
<td>64</td>
</tr>
<tr>
<td>High Memory Extra Large</td>
<td>0.300</td>
<td>$0.80</td>
<td>1.1</td>
<td>13.0</td>
<td>4.25</td>
<td>850</td>
<td>64</td>
</tr>
<tr>
<td>High Memory Double Extra Large</td>
<td>0.650</td>
<td>$2.00</td>
<td>2.6</td>
<td>3.25</td>
<td>66.4</td>
<td>1690</td>
<td>64</td>
</tr>
<tr>
<td>High-Memory Quad Extra Large</td>
<td>0.170</td>
<td>$0.50</td>
<td>2.0</td>
<td>2.90</td>
<td>1.7</td>
<td>156</td>
<td>32</td>
</tr>
<tr>
<td>High-CPU Large</td>
<td>0.680</td>
<td>$2.00</td>
<td>8</td>
<td>2.50</td>
<td>7.0</td>
<td>1690</td>
<td>64</td>
</tr>
<tr>
<td>High-CPU Extra Large</td>
<td>1.600</td>
<td>$4.00</td>
<td>3.3</td>
<td>4.20</td>
<td>23.0</td>
<td>1690</td>
<td>64</td>
</tr>
</tbody>
</table>

- Closest computer in WSC example is Standard Extra Large
- @$0.11/hr, Amazon EC2 can make money!
 - even if used only 50% of time

Why Cloud Computing Now?

- "The Web Space Race": Build-out of extremely large datacenters (10,000’s of commodity PCs)
 - Build-out driven by growth in demand (more users) ➞ Infrastructure software and Operational expertise
- Discovered economy of scale: 5-7x cheaper than provisioning a medium-sized (1000 servers) facility
- More pervasive broadband Internet so can access remote computers efficiently
- Commoditization of HW & SW
 - Standardized software stacks

Warehouse Scale Computers

- Massive scale datacenters: 10,000 to 100,000 servers + networks to connect them together
 - Emphasize cost-efficiency
 - Attention to power: distribution and cooling
- (relatively) homogeneous hardware/software
- Offer very large applications (Internet services): search, social networking, video sharing
- Very highly available: <1 hour down/year
 - Must cope with failures common at scale
- "...WSCs are no less worthy of the expertise of computer systems architects than any other class of machines" Barroso and Hoelzle 2009

Design Goals of a WSC

- Unique to Warehouse-scale
 - Ample parallelism:
 - Batch apps: large number independent data sets with independent processing. Also known as Data-Level Parallelism
 - Scale and its Opportunities/Problems
 - Relatively small number of these make design cost expensive and difficult to amortize
 - But price breaks are possible from purchases of very large numbers of commodity servers
 - Must also prepare for high component failures
 - Operational Costs Count:
 - Cost of equipment purchases << cost of ownership

E.g., Google’s Oregon WSC
Containers in WSCs

Equipment Inside a WSC

Server, Rack, Array

Google Server Internals

Coping with Performance in Array

Coping with Workload Variation

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>Rack</th>
<th>Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Racks</td>
<td>8</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Servers</td>
<td>1</td>
<td>80</td>
<td>2400</td>
</tr>
<tr>
<td>Cores (Processors)</td>
<td>8</td>
<td>640</td>
<td>19,200</td>
</tr>
<tr>
<td>DRAM Capacity (GB)</td>
<td>16</td>
<td>1,280</td>
<td>38,400</td>
</tr>
<tr>
<td>Disk Capacity (GB)</td>
<td>4,000</td>
<td>320,000</td>
<td>9,600,000</td>
</tr>
<tr>
<td>DRAM Latency (microseconds)</td>
<td>0.1</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>Disk Latency (microseconds)</td>
<td>10,000</td>
<td>11,000</td>
<td>12,000</td>
</tr>
<tr>
<td>DRAM Bandwidth (MB/sec)</td>
<td>20,000</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>Disk Bandwidth (MB/sec)</td>
<td>200</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

- Online service: Peak usage 2X off-peak
Impact of latency, bandwidth, failure, varying workload on WSC software?

• WSC Software must take care where it places data within an array to get good performance
• WSC Software must cope with failures gracefully
• WSC Software must scale up and down gracefully in response to varying demand
• More elaborate hierarchy of memories, failure tolerance, workload accommodation makes WSC software development more challenging than software for single computer

Power vs. Server Utilization

• Server power usage as load varies idle to 100%
• Uses ½ peak power when idle!
• Uses ¾ peak power when 10% utilized! 90%@ 50%
• Most servers in WSC utilized 10% to 50%
• Goal should be Energy-Proportionality: % peak load = % peak energy

Power Usage Effectiveness

• Overall WSC Energy Efficiency: amount of computational work performed divided by the total energy used in the process
• Power Usage Effectiveness (PUE): Total building power / IT equipment power
 – An power efficiency measure for WSC, not including efficiency of servers, networking gear
 – 1.0 = perfection

PUE in the Wild (2007)

High PUE: Where Does Power Go?

Google WSC A PUE: 1.24

1. Careful air flow handling
2. Elevated cold aisle temperatures
3. Use of free cooling
4. Per-server 12-V DC UPS
5. Measure vs. estimate PUE, publish PUE, and improve operation
Google WSC A PUE: 1.24

1. Careful air flow handling
 • Don’t mix server hot air exhaust with cold air (separate warm aisle from cold aisle)
 • Short path to cooling so little energy spent moving cold or hot air long distances
 • Keeping servers inside containers helps control air flow

Google WSC A PUE: 1.24

2. Elevated cold aisle temperatures
 • 81°F instead of traditional 65°-68°F
 • Found reliability OK if run servers hotter

3. Use of free cooling
 • Cool warm water outside by evaporation in cooling towers
 • Locate WSC in moderate climate so not too hot or too cold

Google WSC A PUE: 1.24

4. Per-server 12-V DC UPS
 • Rather than WSC wide UPS, place single battery per server board
 • Increases WSC efficiency from 90% to 99%

5. Measure vs. estimate PUE, publish PUE, and improve operation

Summary

• Parallelism is one of the Great Ideas
 — Applies at many levels of the system – from instructions to warehouse scale computers
• Post PC Era: Parallel processing, smart phone to WSC
• WSC SW must cope with failures, varying load, varying HW latency bandwidth
• WSC HW sensitive to cost, energy efficiency
• WSCs support many of the applications we have come to depend on