In the News
Rumors of the PC’s demise have been greatly exaggerated?
In the long run, HP’s decision to keep the PC unit isn’t a slam dunk. PCs are still a low-margin commodity business...

Review
- Use muxes to select among inputs
 - S control bits selects from \(2^S\) inputs
 - Each input can be \(n\)-bits wide, indep of \(S\)
- Can implement muxes hierarchically
- ALU can be implemented using a mux
 - Coupled with basic block elements
- \(N\)-bit adder-subtractor done using \(N\) 1-bit adders with XOR gates on input
 - XOR serves as conditional inverter

Five Components of a Computer

The CPU
- **Processor (CPU):** the active part of the computer that does all the work (data manipulation and decision-making)
- **Datapath:** portion of the processor that contains hardware necessary to perform operations required by the processor (the brawn)
- **Control:** portion of the processor (also in hardware) that tells the datapath what needs to be done (the brain)
Stages of the Datapath: Overview
• Problem: a single, atomic block that "executes an instruction" (performs all necessary operations beginning with fetching the instruction) would be too bulky and inefficient
• Solution: break up the process of "executing an instruction" into stages, and then connect the stages to create the whole datapath
 – smaller stages are easier to design
 – easy to optimize (change) one stage without touching the others

Five Stages of the Datapath
• Stage 1: Instruction Fetch
• Stage 2: Instruction Decode
• Stage 3: ALU (Arithmetic-Logic Unit)
• Stage 4: Memory Access
• Stage 5: Register Write

Stages of the Datapath (1/5)
• There is a wide variety of MIPS instructions: so what general steps do they have in common?
• Stage 1: Instruction Fetch
 – no matter what the instruction, the 32-bit instruction word must first be fetched from memory (the cache-memory hierarchy)
 – also, this is where we increment PC (that is, PC = PC + 4, to point to the next instruction: byte addressing so + 4)

Stages of the Datapath (2/5)
• Stage 2: Instruction Decode
 – upon fetching the instruction, we next gather data from the fields (decode all necessary instruction data)
 – first, read the opcode to determine instruction type and field lengths
 – second, read in data from all necessary registers
 • for add, read two registers
 • for addi, read one register
 • for jal, no reads necessary

Stages of the Datapath (3/5)
• Stage 3: ALU (Arithmetic-Logic Unit)
 – the real work of most instructions is done here: arithmetic (+, -, *, /), shifting, logic (&, |), comparisons (slt)
 – what about loads and stores?
 • lw $t0, 40($t1)
 • the address we are accessing in memory = the value in $t1 PLUS the value 40
 • so we do this addition in this stage

Stages of the Datapath (4/5)
• Stage 4: Memory Access
 – actually only the load and store instructions do anything during this stage; the others remain idle during this stage or skip it all together
 – since these instructions have a unique step, we need this extra stage to account for them
 – as a result of the cache system, this stage is expected to be fast
Stages of the Datapath (5/5)

- **Stage 5: Register Write**
 - Most instructions write the result of some computation into a register.
 - Examples: arithmetic, logical, shifts, loads, slt.
 - What about stores, branches, jumps?
 - Don’t write anything into a register at the end.
 - These remain idle during this fifth stage or skip it all together.

Datapath Walkthroughs (1/3)

- **add $r3,$r1,$r2 # r3 = r1+r2**
 - Stage 1: fetch this instruction, increment PC.
 - Stage 2: decode to determine it is an add, then read registers $r1$ and $r2$.
 - Stage 3: add the two values retrieved in Stage 2.
 - Stage 4: idle (nothing to write to memory).
 - Stage 5: write result of Stage 3 into register $r3$.

Datapath Walkthroughs (2/3)

- **slti $r3,$r1,17 # if (r1 < 17) r3 = 1 else r3 = 0**
 - Stage 1: fetch this instruction, increment PC.
 - Stage 2: decode to determine it is an slti, then read register $r1$.
 - Stage 3: compare value retrieved in Stage 2 with the integer 17.
 - Stage 4: idle.
 - Stage 5: write the result of Stage 3 (1 if reg source was less than signed immediate, 0 otherwise) into register $r3$.

Example: add Instruction

Example: slti Instruction
Datapath Walkthroughs (3/3)

- **sw $r3,17($r1) # Mem[r1+17]=r3**
 - Stage 1: fetch this instruction, increment PC
 - Stage 2: decode to determine it is a *sw*, then read registers $r1$ and $r3$
 - Stage 3: add 17 to value in register $r1$ (retrieved in Stage 2) to compute address
 - Stage 4: write value in register $r3$ (retrieved in Stage 2) into memory address computed in Stage 3
 - Stage 5: idle (nothing to write into a register)

Example: *sw* Instruction

![Diagram of *sw* instruction](image)

Why Five Stages? (1/2)

- Could we have a different number of stages?
 - Yes, and other architectures do
- So why does MIPS have five if instructions tend to idle for at least one stage?
 - Five stages are the union of all the operations needed by all the instructions.
 - One instruction uses all five stages: the *load*

Why Five Stages? (2/2)

- **lw $r3,17($r1) # r3=Mem[r1+17]**
 - Stage 1: fetch this instruction, increment PC
 - Stage 2: decode to determine it is a *lw*, then read register $r1$
 - Stage 3: add 17 to value in register $r1$ (retrieved in Stage 2)
 - Stage 4: read value from memory address computed in Stage 3
 - Stage 5: write value read in Stage 4 into register $r3$

Example: *lw* Instruction

![Diagram of *lw* instruction](image)

Peer Instruction

- How many places in this diagram will need a multiplexer to select one from multiple inputs?
 - a) 0
 - b) 1
 - c) 2
 - d) 3
 - e) 4 or more
How many places in this diagram will need a multiplexor to select one from multiple inputs

a) 0 b) 1 c) 2 d) 3 e) 4 or more

What Hardware Is Needed? (1/2)

• PC: a register that keeps track of address of the next instruction to be fetched
• General Purpose Registers
 – Used in Stages 2 (Read) and 5 (Write)
 – MIPS has 32 of these
• Memory
 – Used in Stages 1 (Fetch) and 4 (R/W)
 – Caches makes these stages as fast as the others (on average, otherwise multicycle stall)

What Hardware Is Needed? (2/2)

• ALU
 – Used in Stage 3
 – Performs all necessary functions: arithmetic, logicals, etc.
• Miscellaneous Registers
 – One stage per clock cycle: Registers inserted between stages to hold intermediate data and control signals as they travel from stage to stage
 – Note: Register is a general purpose term meaning something that stores bits. Realize that not all registers are in the “register file”

CPU Clocking (1/2)

• For each instruction, how do we control the flow of information through the datapath?
• Single Cycle CPU: All stages of an instruction completed within one long clock cycle
 – Clock cycle sufficiently long to allow each instruction to complete all stages without interruption within one cycle

CPU Clocking (2/2)

• Alternative multiple-cycle CPU: only one stage of instruction per clock cycle
 – Clock is made as long as the slowest stage
 – Several significant advantages over single cycle execution:
 Unused stages in a particular instruction can be skipped
 OR instructions can be pipelined (overlapped)
Processor Design

• Analyze instruction set architecture (ISA) to determine datapath requirements
 – Meaning of each instruction is given by register transfers
 – Datapath must include storage element for ISA registers
 – Datapath must support each register transfer
• Select set of datapath components and establish clocking methodology
• Assemble datapath components to meet requirements
• Analyze each instruction to determine sequence of control point settings to implement the register transfer
• Assemble the control logic to perform this sequencing

Summary

• CPU design involves Datapath, Control
 – 5 Stages for MIPS Instructions
 1. Instruction Fetch
 2. Instruction Decode & Register Read
 3. ALU (Execute)
 4. Memory
 5. Register Write
• Datapath timing: single long clock cycle or one short clock cycle per stage