61C in the News
nformationWeek

THE BUSINESS VALUE OF TECHNOLOGY

IT's Next Hot Job: Hadoop Guru

JPMorgan Chase makes a case for the big data platform (and career track) of the future.

By Doug Henschen InformationWeek
November 09,2011 10:00 AM
"Hadoop's a big deal," said [Berkeley [JP Morgan] has 1..59) of

EECS Alum] Cloudera CEO Mike Olson. petabytes (with a "p

s . . . data online, generated by

It's not just a Web thing. Companies trading operations. bankin

across a wide range of vertical markets are ing op . 9
) . activities, credit card

generating big data and need to

understand that data in a way they never trgpsacthns, and some 3.5
. R billion logins each year
did before.

“The good news is that Hadoop experts aren't born, they're trained.”

11/9/11 Fall 2011 -- Lecture #32

CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Lecture 32: Pipeline Parallelism 3

Instructors:
Mike Franklin

Dan Garcia
http://inst.eecs.Berkeley.edu/~cs61c/fall

11/9/11 Fall 2011 -- Lecture #32

11/9/11

You Are Here!

Software Hardware
Parallel Requests

. Warehouse & Smart
Assigned to computer } Phone
e.g., Search “Katz” ;

Parallel Threads _ Harness 1 %
Assigned t Parallelism &
ssigned to core Achieve High . _C_ t\\\
e.g., Lookup, Ads Performance aee==""" omputer “v-._

Parallel Instructions
>1 instruction @ one time

Memory o (Cache)

e.g., 5 pipelined instructions Inp,ut»/Oﬁtput Core \
Parallel Data S >
>1 data item @ one time Istruction Unit(s) U%?tc(t;)ona
K siob okt
e.g., Add of 4 pairs ctf WT:)rds ujﬁi /ﬁ%ﬁ%z"‘%s*ﬁ
Hardware descriptions

Main Memory e

P

-

All gates functioning in

J .
parallel at same time Logic Gate
11/9/11 Fall 2011 -- Lecture #32 3

P&H Figure 4.50

w‘ ‘r—. 1
Instruction| | Ao)] wel——]
| : I -
f—“ EX — M lwel
IF/ID ID/EX EX/MEM MEM/WB

11/9/11 Fall 2011 -- Lecture #32

11/9/11

P&H 4.51 - Pipelined Control

11/9/11 Fall 2011 -- Lecture #32

Hazards

Situations that prevent starting the next logical
instruction in the next clock cycle
1. Structural hazards
— Required resource is busy (e.g., roommate studying)
2. Data hazard

— Need to wait for previous instruction to complete its
data read/write (e.g., pair of socks in different loads)

3. Control hazard

— Deciding on control action depends on previous
instruction (e.g., how much detergent based on how
clean prior load turns out)

11/9/11 Fall 2011 -- Lecture #32

11/9/11

Data Hazards: Code Scheduling to
Avoid Stalls

* Reorder code to avoid use of load result in the
next instruction

e CcodeforA = B + E; C = B + F;

Tw $t1, 0($t0) Tw $t1, 0($t0)
Tw ($t2)-4($t0) Tw
——»add $t3, $t1, Tw ($t4)
sw $t3, 12($t0) add $t3,\
Tw @ 8($t0) sw $t3,

i | add st5, st1,(st4) add Se5,
sw $t5, 16($t0) sw $t5, 16($t0)

11/9/11 Fall 2011 -- Lecture #32 7

3. Control Hazards

* Branch determines flow of control

— Fetching next instruction depends on branch
outcome

— Pipeline can’t always fetch correct instruction
* Still working on ID stage of branch

* BEQ, BNE in MIPS pipeline
* Simple solution Option 1: Stall on every
branch until have new PC value

— Would add 2 bubbles/clock cycles for every
Branch! (~ 20% of instructions executed)

11/9/11 Fall 2011 -- Lecture #32 8

11/9/11

Stall => 2 Bubbles/Clocks

Time (clock cycles)

[
n 15 H|Reg| o HE
¥ > —| 1€,
S beq 8 E | i &
t : N
r. Instr 1 I$ |- Reg — D$ IF— Reg
(0] 15 HReg : D$ i-{Reg
. Instr 2 y |f
d |instr 3 18 Reg
e
I YInstr 4 DS | Ree
Where do we do the compare for the branch? .

11/9/11 Fall 2011 -- Lecture #3

Control Hazard: Branching

* Optimization #1:
— Insert special branch comparator in Stage 2
— As soon as instruction is decoded (Opcode

identifies it as a branch), immediately make a
decision and set the new value of the PC

— Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only
one no-op is needed

— Side Note: means that branches are idle in Stages
3,4and 5

Question: What’s an efficient way to implement the equality comparison?

11/9/11 Fall 2011 -- Lecture #32 10

11/9/11

One Clock Cycle Stall

Time (clock cycles)

|

15 | Ree[T Y D$ iR
2 beq * [
t |nStr 1 1$ Reg _‘ D$ IF- Reg
r. 1

15 H|Reg[T 3 D$ LR

0 Instr 2 Reg q |f e
5 |nstl' 3 s U] Reg _‘ D$?»- Reg
e | 15 H|Reg[" ?, | D$ LilReg
r Instr 4 A

Branch comparator moved to Decode stage.

11/9/11 Fall 2011 -- Lecture #32

Control Hazards: Branching

* Option 2: Predict outcome of a branch, fix up
if guess wrong

— Must cancel all instructions in pipeline that
depended on guess that was wrong

— This is called “flushing” the pipeline

* Simplest hardware if we predict that all
branches are NOT taken

— Why?

11/9/11 Fall 2011 -- Lecture #32 12

11/9/11

Control Hazards: Branching

* Option #3: Redefine branches

— Old definition: if we take the branch, none of the
instructions after the branch get executed by accident

— New definition: whether or not we take the branch,
the single instruction immediately following the
branch gets executed (the branch-delay slot)

* Delayed Branch means we always execute inst
after branch

* This optimization is used with MIPS

11/9/11 Fall 2011 -- Lecture #32 13

Example: Nondelayed vs. Delayed Branch

Nondelayed Branch Delayed Branch
or $8, $9, $10 add $1, $2,83
add $1, $2, $3 sub $4, $5, $6
sub $4, $5, $6 beq $1, $4, Exit
beqg $1, $4, Exit - or §8, $9, $10

xor $10, $1, $11 xor $10, $1, S11

Exit: Exit:

11/9/11 Fall 2011 -- Lecture #32 14

11/9/11

Control Hazards: Branching

* Notes on Branch-Delay Slot
— Worst-Case Scenario: put a no-op in the branch-
delay slot
— Better Case: place some instruction preceding the

branch in the branch-delay slot—as long as the
changed doesn’t affect the logic of program

* Re-ordering instructions is common way to speed up
programs

* Compiler usually finds such an instruction 50% of time
* Jumps also have a delay slot ...

11/9/11 Fall 2011 -- Lecture #32 15

Greater Instruction-Level Parallelism (ILP)

* Deeper pipeline (5 => 10 => 15 stages)
— Less work per stage = shorter clock cycle
* Multiple issue “superscalar”
— Replicate pipeline stages = multiple pipelines
— Start multiple instructions per clock cycle
— CPl < 1, so use Instructions Per Cycle (IPC)
— E.g., 4GHz 4-way multiple-issue

* 16 BIPS, peak CPI = 0.25, peak IPC = 4
— But dependencies reduce this in practice

11/9/11 Fall 2011 - Lecture #32 16

w»
SN
N
o
0
]
=
o)
o
=
3
V)
>
Q.
>
Qo
<
Q
>
[@]
(0]
o
=3
(72}
=3
=
o
g.
o
=)
—
(]
<
[0}
0
2
ol
)
=
3

11/9/11

Multiple Issue

* Static multiple issue
— Compiler groups instructions to be issued together
— Packages them into “issue slots”
— Compiler detects and avoids hazards

* Dynamic multiple issue
— CPU examines instruction stream and chooses instructions
to issue each cycle
— Compiler can help by reordering instructions
— CPU resolves hazards using advanced techniques at
runtime

11/9/11 Fall 2011 -- Lecture #32 17

Superscalar Laundry: Parallel per stage
6PM 7 8 9 10 11 12 1 2AM

R o = .

303030 30 30 Time

" & (light clothing)

" & (dark clothing)

* & (verydirty clothing)
(light clothing)
(dark clothing)
(very dirty clothing)

to match mix of parallel tasks?

x 0 0 —

11/9/11 Fall 2011 -- Lecture #32 18

11/9/11

Pipeline Depth and Issue Width

* |ntel Processors over Time

Microprocessor Year | Clock Rate | Pipeline Issue Cores Power
Stages width

i486 1989 25 MHz 5 1 1 5W

Pentium 1993 66 MHz 5 2 1 10W
Pentium Pro 1997 200 MHz 10 3 1 29W
P4 Willamette 2001 2000 MHz 22 3 1 75W
P4 Prescott 2004 | 3600 MHz 31 3 1 103w
Core 2 Conroe 2006 | 2930 MHz 14 4 2 75W
Core 2 Yorkfield 2008 | 2930 MHz 16 4 4 95w
Core i7 Gulftown | 2010 | 3460 MHz 16 4 6 130W

Chapter 4 — The Processor —
19

Pipeline Depth and Issue Width

10000
N ==Clock

1000
**®pPower

100 - “¢=Pipeline Stages
<lFissue width
10

“*=Cores

1
1989 1992 1995 1998 2001 2004 2007 2010

11/9/11 Fall 2011 -- Lecture #32 20

11/9/11

10

Static Multiple Issue

* Compiler groups instructions into “issue
packets”
— Group of instructions that can be issued on a

single cycle

— Determined by pipeline resources required

* Think of an issue packet as a very long
instruction
— Specifies multiple concurrent operations

11/9/11 Fall 2011 -- Lecture #32 21

Scheduling Static Multiple Issue

* Compiler must remove some/all hazards
— Reorder instructions into issue packets
— No dependencies within a packet

— Possibly some dependencies between packets
* Varies between ISAs; compiler must know!

— Pad issue packet with nop if necessary

11/9/11 Fall 2011 -- Lecture #32 22

11/9/11

11

MIPS with Static Dual Issue

* Two-issue packets
— One ALU/branch instruction
— One load/store instruction
— 64-bit aligned
¢ ALU/branch, then load/store
¢ Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM | WB

n+4 Load/store IF ID EX MEM WwB

n+8 ALU/branch IF ID EX MEM | WB

n+12 Load/store IF ID EX MEM WwB

n+16 ALU/branch IF ID EX MEM | WB
n+20 Load/store IF ID EX MEM WB

11/9/11

Fall 2011 -- Lecture #32

23

Hazards in the Dual-Issue MIPS

More instructions executing in parallel

EX data hazard
— Forwarding avoided stalls with single-issue

— Now can’t use ALU result in load/store in same packet
, $s0, $s1

- add
Toad $s2, 0(C

* Split into two packets, effectively a stall

Load-use hazard
— Still one cycle use latency, but now two instructions

)

* More aggressive scheduling required

11/9/11

Fall 2011 -- Lecture #32

24

11/9/11

12

Loop:

Scheduling Example
e Schedule this for dual-issue MIPS

Tw , 0(%$sD)
addu $tO0, , $s2
sw $t0, 0($s1)
addi $s1, $s1,-4

$tO=array element
add scalar in $s2
store result

decrement pointer

bne $s1, $zero, Loop # branch $s1!=0

ALU/branch

Load/store cycle

Loop:

N[

w

N

11/9/11

Fall 2011 -- Lecture #32

25

Scheduling Example
e Schedule this for dual-issue MIPS

Loop: Tw , 0($sL) # $tO=array element
addu $tO0, , $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0($sD) 1

2
3
4

11/9/11

Fall 2011 -- Lecture #32

26

11/9/11

13

Scheduling Example
e Schedule this for dual-issue MIPS

Loop: Tw , 0(%sL) # $tO=array element
addu $tO0, , $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0($sD) 1

addi $s1, $s1,-4 2
3
4

11/9/11

Fall 2011 -- Lecture #32

27

Scheduling Example
e Schedule this for dual-issue MIPS

Loop: Tw , 0($sL) # $tO=array element
addu $tO0, , $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0($sD) 1

addi $s1, $s1,-4 2
addu $tO0, , $s2 3
4

11/9/11

Fall 2011 -- Lecture #32

28

11/9/11

14

Loop: Tw
addu $tO0, , $s2

Scheduling Example
e Schedule this for dual-issue MIPS

, 0(%$sD)

sw $t0, 0($s1)
addi $s1, $s1,-4

$tO=array element
add scalar in $s2
store result

decrement pointer

bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: , 0($sD) 1
addi $s1, $s1,-4 2
addu $tO, , $s2 3
bne $sl1, $zero, Loop $t0, 4($sD) 4

11/9/11

IPC =5/4 =1.25 (c.f. peak IPC = 2)

Fall 2011 -- Lecture #32

29

Loop Unrolling

* Replicate loop body to expose more
parallelism

— Reduces loop-control overhead

» Use different registers per replication

— Called “register renaming”

— Avoid loop-carried “anti-dependencies”
* Store followed by a load of the same register

* Aka “name dependence”

11/9/11

— Reuse of a register name

Fall 2011 -- Lecture #32

30

11/9/11

15

Loop Unrolling Example

ALU/branch Load/store cycle
Loop: |addi $s1, $s1,-16 Tw , 0($s1) 1
Tw , 12($s1) 2
addu $tO0, , $s2 Tw , 8(%s1) 3
addu $t1, , $s2 Tw , 4(8s1) 4
addu $t2, , $s2 sw $t0, 16($sl) 5
addu $t3, , $s2 sw $tl, 12($sl) 6
sw $t2, 8($s1) 7
bne $s1, $zero, Loop |sw $t3, 4($s1l) 8

* IPC=14/8=1.75

— Closer to 2, but at cost of registers and code size

Fall 2011 -- Lecture #32
11/9/11 31

Dynamic Multiple Issue

* “Superscalar” processors
* CPU decides whether to issue 0, 1, 2, ... each
cycle
— Avoiding structural and data hazards
* Avoids the need for compiler scheduling
— Though it may still help
— Code semantics ensured by the CPU

11/9/11 Fall 2011 -- Lecture #32 32

11/9/11

16

Dynamic Pipeline Scheduling

* Allow the CPU to execute instructions out of
order to avoid stalls

— But commit result to registers in order

* Example
Tw , 20($s2)
addu $t1, , $t2

subu $s4, $s4, $t3
slti $t5, $s4, 20

— Can start subu while addu is waiting for lw

11/9/11 Fall 2011 -- Lecture #32 33

Why Do Dynamic Scheduling?

Why not just let the compiler schedule code?

Not all stalls are predicable
— e.g., cache misses

Can’t always schedule around branches
— Branch outcome is dynamically determined

Different implementations of an ISA have
different latencies and hazards

11/9/11 Fall 2011 -- Lecture #32 34

11/9/11

17

Speculation

* “Guess” what to do with an instruction
— Start operation as soon as possible

— Check whether guess was right
* If so, complete the operation
* If not, roll-back and do the right thing

* Common to static and dynamic multiple issue

* Examples

— Speculate on branch outcome (Branch Prediction)
* Roll back if path taken is different

— Speculate on load
* Roll back if location is updated

11/9/11 Fall 2011 -- Lecture #32 35

Pipeline Hazard: Matching socks in later load
6|PM 7 8 9 10 11 12 1 2AM

S i e s | -
3030 30 30 30 30 30 Time

1 < bubbles> A

x>0 0 -

Gt Gt Ct GGt &

S o a0

* Adepends on D; stall since folder tied up;

11/9/11 Fall 2011 -- Lecture #32 36

11/9/11

18

Out-of-Order Laundry: Don’t Wait

6PM 7 8 9 10 11 12 1 2AM
T ;)||30|3o|303()’3o’ Time
o | B {5 <owne> f
S
k| O
o 6
& A
/B A,ik.
e
D

* A depends on D; rest continue; need more resources to
allow out-of-order

11/9/11 Fall 2011 -- Lecture #32 37

Out Of Order Intel
e All use O0OO since 2001

Microprocessor Year Clock Rate Pipeline Issue Out-of-order/ | Cores Power
Stages width Speculation

486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W
Core 2006 2930MHz 14 4 Yes 2 75W
Core 2 Yorkfield 2008 2930 MHz 16 4 Yes 4 95W
Core i7 Gulftown 2010 3460 MHz 16 4 Yes 6 130W

Chapter 4 — The Processor —

38

11/9/11

19

Does Multiple Issue Work?
The BIG Picture

* Yes, but not as much as we’d like
* Programs have real dependencies that limit ILP
* Some dependencies are hard to eliminate
— e.g., pointer aliasing
* Some parallelism is hard to expose
— Limited window size during instruction issue
* Memory delays and limited bandwidth
— Hard to keep pipelines full
* Speculation can help if done well

E4)/2Q11 -- Lecture #32 39

“And in Conclusion..”

* Pipelining is an important form of ILP
* Challenge is (are?) hazards
— Forwarding helps w/many data hazards

— Delayed branch helps with control hazard in 5 stage
pipeline

— Load delay slot / interlock necessary
* More aggressive performance:

— Longer pipelines

— Superscalar

— Out-of-order execution

— Speculation

11/9/11 Fall 2011 -- Lecture #32 40

11/9/11

20

