61Cin the News
InformationWeek

THE BUSINESS VALUE OF TECHNOLOGY

IT's Next Hot Job: Hadoop Guru
JPMorgan Chase makes a case for the big data platform (and career track) of the future.

By Doug Henschen InformationWeek
November 09, 2011 10:00 AM
"Hadoop's a big deal," said [Berkeley [P Morgan] has 1..59

EECS Alum] Cloudera CEO Mike Olson. ze:abwnlg: (‘”"hnarpt) d°:)
"It's not just a Web thing. Companies ata online, generated by

. N trading operations, banking
across a wide range of vertical markets are Sivit dit card
generating big data and need to activities, credit car

understand that data in a way they never L'.TIFS‘“’IC"".”S' andhsome 35
did before." illion logins each year

“The good news is that Hadoop experts aren't born, they're trained.”

11/9/11 Fall 2011 - Lecture #32 1

You Are Herel!

Software
Parallel Requests
Assigned to computer
e.g., Search “Katz”
Parallel Threads
Assigned to core
e.g., Lookup, Ads

Harness
Parallelism &
Achieve High
Performance
Parallel Instructions
>1instruction @ one time

e.g., 5 pipelined instructions
Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words
Hardware descriptions
All gates functioning in
parallel at same time

11/9/11 Fall 2011 - Lecture #32 =

Core

Functional
Unit(s)

Today’s
Lecture

=, Logic Gatel

3

P&H 4.51 — Pipelined Control

11/9/11 Fall 2011 - Lecture #32

11/9/11

CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Lecture 32: Pipeline Parallelism 3

Instructors:
Mike Franklin

Dan Garcia
http://inst.eecs.Berkeley.edu/~cs61c/fall

P&H Figure 4.50

Instruction| _ |

—
=

IFID IDEX EXMEM MEMWB

Hazards

Situations that prevent starting the next logical
instruction in the next clock cycle
Structural hazards
— Required resource is busy (e.g., roommate studying)
2. Data hazard

— Need to wait for previous instruction to complete its

data read/write (e.g., pair of socks in different loads)

3. Control hazard

— Deciding on control action depends on previous
instruction (e.g., how much detergent based on how
clean prior load turns out)

=

Data Hazards: Code Scheduling to
Avoid Stalls

* Reorder code to avoid use of load result in the
next instruction

* CcodeforA = B + E; C =B + F;

Tw $t1, 0($t0) Tw $tl, 0($t0)
w (5t2)-4(5t0) Tw
—-add $t3, $t1, Tw ($t4)
sw $t3, 12($t0) add $t3,°§
Tw (5t4)-8(5t0) sw o $t3,
[Sai] — add st $t1,(5t4) add $t5,
sw $t5, 16($t0) sw $t5, 16($t0)

11/9/11 a1l 2011 - Lecture #32

11/9/11

3. Control Hazards

* Branch determines flow of control

— Fetching next instruction depends on branch
outcome

— Pipeline can’t always fetch correct instruction
« Still working on ID stage of branch

* BEQ, BNE in MIPS pipeline
* Simple solution Option 1: Stall on every
branch until have new PC value

— Would add 2 bubbles/clock cycles for every
Branch! (~ 20% of instructions executed)

11/9/11 a1l 2011 - Lecture #32

Stall => 2 Bubbles/Clocks

Time (clock cycles)

|
r. |Instr1 R
? Instr 2 IE [Je
g Instr 3 IE lﬂ!
I Vinstr 4 Rt IE
. Where do we do the compare for the branch?

Control Hazard: Branching

* Optimization #1:

— Insert special branch comparator in Stage 2

— As soon as instruction is decoded (Opcode
identifies it as a branch), immediately make a
decision and set the new value of the PC

— Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only
one no-op is needed

— Side Note: means that branches are idle in Stages
3,4and5

Question: What'’s an efficient way to implement the equality comparison?

11/9/11 112011 - Lecture #32 10

One Clock Cycle Stall

Time (clock cycles)

beq

Instr 1

S e S —-

Instr 2

Instr 3

Instr 4

=0a=0

... Branch compai’a‘tg;{r‘ntt;‘\(wed to Decode stage.

Control Hazards: Branching

* Option 2: Predict outcome of a branch, fix up
if guess wrong

— Must cancel all instructions in pipeline that
depended on guess that was wrong

— This is called “flushing” the pipeline

Simplest hardware if we predict that all
branches are NOT taken
— Why?

11/9/11

Control Hazards: Branching

Option #3: Redefine branches

— Old definition: if we take the branch, none of the
instructions after the branch get executed by accident

— New definition: whether or not we take the branch,
the single instruction immediately following the
branch gets executed (the branch-delay slot)

Delayed Branch means we always execute inst

after branch

This optimization is used with MIPS

Example: Nondelayed vs. Delayed Branch

Delayed Branch
add $1, $2,$3

Nondelayed Branch
or $8, $9, $10

add $1, $2, $3 sub $4, $5, $6
sub $4, $5, $6
beq $1, $4, Exit or $8, $9, $10
xor $10, $1, $11

Exit: Exit:

beq $1, $4, Exit

xor $10, $1, $11

Control Hazards: Branching

Notes on Branch-Delay Slot
— Worst-Case Scenario: put a no-op in the branch-
delay slot
— Better Case: place some instruction preceding the
branch in the branch-delay slot—as long as the
changed doesn’t affect the logic of program
« Re-ordering instructions is common way to speed up
programs
* Compiler usually finds such an instruction 50% of time
* Jumps also have a delay slot ...

Greater Instruction-Level Parallelism (ILP)

* Deeper pipeline (5 => 10 => 15 stages)
— Less work per stage = shorter clock cycle
* Multiple issue “superscalar”
— Replicate pipeline stages = multiple pipelines
— Start multiple instructions per clock cycle
— CPI < 1, so use Instructions Per Cycle (IPC)
— E.g., 4GHz 4-way multiple-issue
* 16 BIPS, peak CPI = 0.25, peak IPC = 4
— But dependencies reduce this in practice

w
S
b
(=]
o
o
o
o
2
3
)
=
=3
Z
<
o
g
Q
5
2
:
=
o
=]
=
2
@
o
o
S
o
z
3

Multiple Issue

Static multiple issue

— Compiler groups instructions to be issued together

— Packages them into “issue slots”

— Compiler detects and avoids hazards

Dynamic multiple issue

— CPU examines instruction stream and chooses instructions
to issue each cycle

— Compiler can help by reordering instructions

— CPU resolves hazards using advanced techniques at
runtime

Superscalar Laundry: Parallel per stage
6PM 7 8 9 10 11 12 1 2AM

303030 30 30 Time

-
a5 A (light clothing)
i S J8§° A (dark clothing)
&5 & (verydirty clothing)
°® A (light clothing)
IPES & (dark clothing)
e : (very dirty clothing)
. MorQesog'gs, H& to match mix of parallel tasks?

Pipeline Depth and Issue Width

* Intel Processors over Time

11/9/11

Pipeline Depth and Issue Width

10000
N =eClock
1000
<ePower
100 - =#=Pipeline Stages
T “@|ssue width
10
%
“i=Cores
1 Uy Smma W x x

1989 1992 1995 1998 2001 2004 2007 2010

Scheduling Static Multiple Issue

* Compiler must remove some/all hazards
— Reorder instructions into issue packets
— No dependencies within a packet

— Possibly some dependencies between packets
* Varies between ISAs; compiler must know!

— Pad issue packet with nop if necessary

11/9/11 Fall 2011 - Lecture #32

Microprocessor Year | Clock Rate | Pipeline Issue Cores Power
Stages width
1486 1989 25 MHz 5 1 1 5W
Pentium 1993 66 MHz 5 2 1 10w
Pentium Pro 1997 | 200MHz| 10 3 1 20W
P4 Willamette 2001 | 2000 MHz| 22 3 1 75W
P4 Prescott 2004 | 3600 MHz| 31 3 1 103W
Core 2 Conroe 2006 | 2930 MHz 14 4 2 75W
Core 2 Yorkfield 2008 2930 MHz 16 4 4 95W
Core i7 Gulftown | 2010 | 3460 MHz| 16 4 6 130W
Chapter 4 — The Processor —
19
Static Multiple Issue
* Compiler groups instructions into “issue
packets”
— Group of instructions that can be issued on a
single cycle
— Determined by pipeline resources required
* Think of an issue packet as a very long
instruction
— Specifies multiple concurrent operations
s/ 12011 - Lectur n
MIPS with Static Dual Issue
* Two-issue packets
— One ALU/branch instruction
— One load/store instruction
— 64-bit aligned
* ALU/branch, then load/store
* Pad an unused instruction with nop
Address | Instruction type Pipeline Stages
n ALU/branch IF D EX MEM wB
n+4 Load/store IF D EX MEM WB
n+8 ALU/branch IF D EX MEM WB
n+12 Load/store IF D EX MEM WwB
n+16 ALU/branch IF 1D EX MEM WB
n+20 Load/store IF 1D EX MEM WB

Hazards in the Dual-Issue MIPS

* More instructions executing in parallel
¢ EX data hazard
— Forwarding avoided stalls with single-issue

— Now can’t use ALU result in load/store in same packet

+ add , $s0, $s1
Tload $s2, 0()

« Split into two packets, effectively a stall
* Load-use hazard
— Still one cycle use latency, but now two instructions
* More aggressive scheduling required

11/9/11 Fall 2011 - Lecture #32

Scheduling Example
* Schedule this for dual-issue MIPS

Loop: Tw , 0($s1) # $t0=array element
addu $t0, , $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: 1

2
3
4

Scheduling Example
* Schedule this for dual-issue MIPS

Loop: Tw , 0($s1) # $tO=array element
addu $t0, , $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0($s1) 1

2
3
4

Scheduling Example
* Schedule this for dual-issue MIPS

Scheduling Example
* Schedule this for dual-issue MIPS

Loop: Tw , 0($s1) # $tO=array element
addu $t0, , $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0($s1) 1

addi $s1, $s1,-4 2
addu $t0, , $s2 3
4

Loop: Tw , 0($s1) # $t0=array element
addu $t0, , $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0($s1) 1

addi $s1, $s1,-4 2
3
4
112011 - Lect
Scheduling Example
* Schedule this for dual-issue MIPS

Loop: Tw , 0($s1) # $t0=array element
addu $t0, , $s2 # add scalar in $s2
sw $t0, 0($s1) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw , 0($s1) 1

addi $s1, $s1,-4 2
addu $t0, , $s2 3
bne $s1, $zero, Loop |sw $t0, 4($s1) 4

IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

112011 - Lectu

Loop Unrolling

* Replicate loop body to expose more
parallelism
— Reduces loop-control overhead

* Use different registers per replication
— Called “register renaming”
— Avoid loop-carried “anti-dependencies”
« Store followed by a load of the same register

* Aka “name dependence”
— Reuse of a register name

Loop Unrolling Example

ALU/branch Load/store cycle
Loop: |addi $s1, $s1,-16 Tw , 0($s1) 1
w , 12($s1) 2
addu $t0, , $s2 Tw , 8($s1) 3
addu $t1, , $s2 Tw , 4(8s1) 4
addu $t2, , $s2 sw $t0, 16($s1) 5
addu $t3, , $s2 sw $tl, 12($s1) 6
sw $t2, 8($sl) 7
bne $s1, $zero, Loop |sw $t3, 4(8$s1) 8

* IPC=14/8=1.75

— Closer to 2, but at cost of registers and code size

11/9/11

Dynamic Multiple Issue

“Superscalar” processors

CPU decides whether to issue 0, 1, 2, ... each
cycle

— Avoiding structural and data hazards

Avoids the need for compiler scheduling

— Though it may still help

— Code semantics ensured by the CPU

Dynamic Pipeline Scheduling

Allow the CPU to execute instructions out of
order to avoid stalls

— But commit result to registers in order
Example

Tw , 20($s2)

addu $t1, , $t2

subu $s4, $s4, $t3

s1ti $t5, $s4, 20
— Can start subu while addu is waiting for lw

Why Do Dynamic Scheduling?

Why not just let the compiler schedule code?
Not all stalls are predicable

—e.g., cache misses

Can’t always schedule around branches

— Branch outcome is dynamically determined

Different implementations of an ISA have
different latencies and hazards

Speculation

“Guess” what to do with an instruction
— Start operation as soon as possible
— Check whether guess was right
* If so, complete the operation
* If not, roll-back and do the right thing
Common to static and dynamic multiple issue
Examples

— Speculate on branch outcome (Branch Prediction)
* Roll back if path taken is different

— Speculate on load
* Roll back if location is updated

11/9,

Pipeline Hazard: Matching socks in later load
6PM 7 8 9 10 11 12 1 2AM

. 30303030303030 Time
a | g e

Ats VA

8 4

o\ 5 A
9| A
‘i 3 =

* Adepends on D; stall since folder tied up;

1 112011 - Lecture #32

Out-of-Order Laundry: Don’t Wait

6PM 7 8 9 10 11 12 1 2AM

B o = e | ;
7 30303030303030 Time
a |3 S o>
s bnd
k| O
o b
;| O
CINE)
e
r 5

* A depends on D; rest continue; need more resources to
allow out-of-order
1191

11/9/11

Out Of Order Intel
¢ All use OO0 since 2001

Core 2 Yorkfield

2008

2930 MHz

95w

Microprocessor Year Clock Rate Pipeline Issue Out-of-order/ | Cores Power
Stages width Speculation
486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10w
Pentium Pro 1997 200MHz 10 3 Yes 1 29w
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W
Core 2006 2930MHz 14 4 Yes 2 75W
4 4
4 6

Core i7 Gulftown

2010

3460 MHz

130W

bter 4 — The Proces:

Does Multiple Issue Work?

Yes, but not as much as we’d like

Programs have real dependencies that limit ILP
Some dependencies are hard to eliminate

— e.g., pointer aliasing

Some parallelism is hard to expose

— Limited window size during instruction issue
Memory delays and limited bandwidth

— Hard to keep pipelines full

Speculation can help if done well

E4(2011 - Lecture #32

“And in Conclusion..”

¢ Pipelining is an important form of ILP

¢ Challenge is (are?) hazards

— Forwarding helps w/many data hazards

— Delayed branch helps with control hazard in 5 stage

pipeline
— Load delay slot / interlock necessary

* More aggressive performance:

— Longer pipelines
— Superscalar

— Out-of-order execution
— Speculation

11/9/11

