

Amdahl's Law: Parallelization Economics

CS 61c, Nov. 30, 2011 Guest Lecture: Brian Gawalt

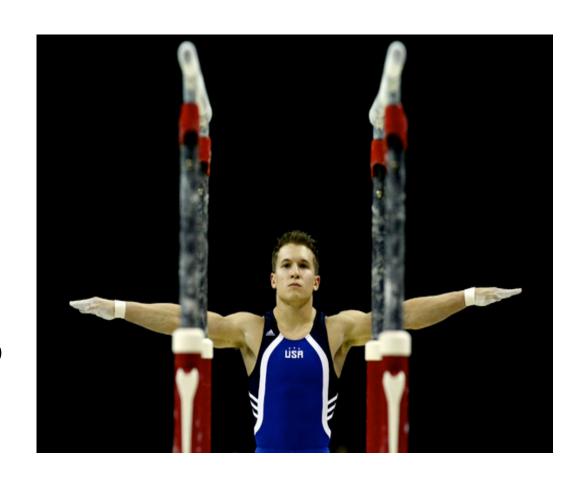
TODAY IN CS! BERKELEY POSTDOC IMPROVES UNDERSTANDING OF MATRIX MULTIPLICATION!

Virginia Vassilevska Williams used convex optimization to tighten the known worst-case upper bound on the complexity of *n*-by-*n* mat. mult. from **O**(**n**^2.374) to **O**(**n**^2.3727). A great theoretical result via a method that suggests even tighter bounds exist & can be found soon!

http://www.scottaaronson.com/blog/?p=839

Parallel Processing: Familiar Obstacles

- Many hands make light work!
 - Execute instructions simultaneously
- But parallelization is haaaarrd....
 - More workers? More overhead!
 - Shared data is hard to coordinate
 - Whine whine whine whine whine



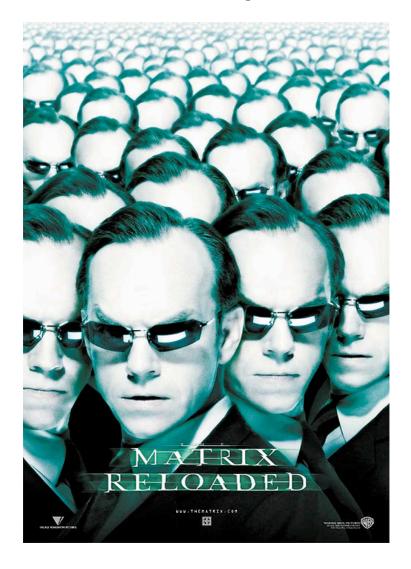
But once you have a parallel system...

... (after handling synchronization...

... after finding a parallel algorithm...

... after finding a memory solution...

... and after handling worker failures)...



... just add more cores forever and win! ... r-right?

Array Copying Example

```
for(i = 0; i < 100; i++) // With one core...
y[i] = x[i]; // <-- 100 instr.
printf("DONE"); // <-- 10 instr.
```

- Takes about 110 instructions to run serially
 - Assume magical AMAT of 1 cycle
 - Assume magical cost-free 0-cycle comparator/increment
 - printf() is legacy code -- must be run serially
- IF we set up a successful parallelization scheme (threading?), each loop iteration could be run in parallel
 - Assume magical, no-collisions caching
 - Assume no increased work for each new thread added

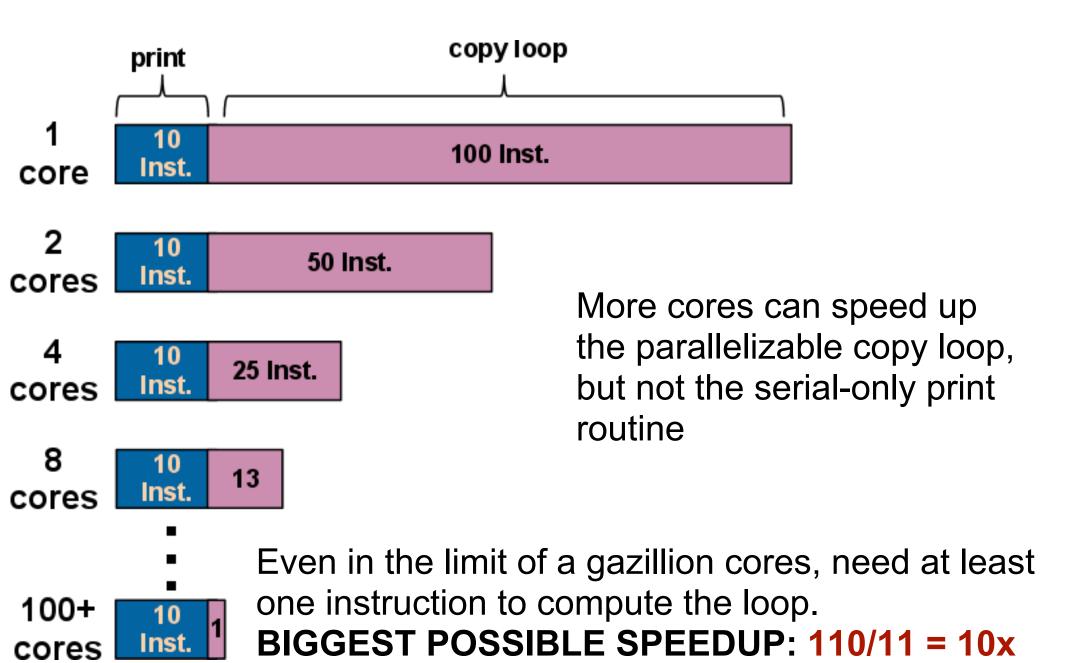
Array Copying Example

```
for(i = 0; i < 100; i++)
y[i] = x[i];
printf("DONE"); // <-- 10 instr.
```

One core takes 110 instructions...

With this many cores	loop takes	printing takes	 totaling	for a speedup of:	
2	50 instr.	10 instr.	60 instr.	1.83x	2 to 4: 1.71x
4	25 instr.	10 instr.	35 instr.	3.14x	4 to 8: 1.52x
8	13 instr.	10 instr.	23 instr.	4.78x	1.52x

Array Copying, Graphically



Amdahl's Law

$$f(N) = \frac{1}{(1 - P) + \frac{P}{N}}$$

P := "Percentage" of code which is parallelizable

N := Number of cores used

f(N) := Amount of speedup code gains using N cores

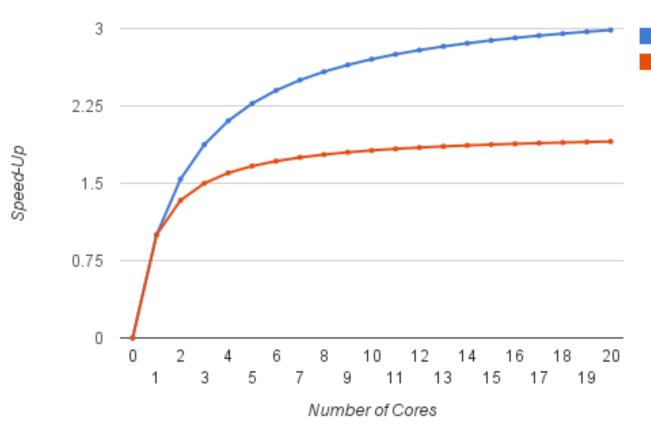
Suggests a maximum possible speedup:

$$\lim_{N \to \infty} f(N) = \lim_{N \to \infty} \frac{1}{(1 - P) + \frac{P}{N}} = \frac{1}{1 - P}$$

Amdahl's Law

$$f(N) = \frac{1}{(1 - P) + \frac{P}{N}}$$

Amdahl's Law for P = 70% and P = 50%



For our copying example,

Seventy

Fifty

P = 100/110 = 10/11 suggesting an asymptote of

$$f(a gazillion) = 11$$

Amdahl's Law's Assumptions

No contention for shared resources!

 All threads have equal access to caches, memory, IO, etc.

No per-thread overhead!

 Adding more threads to the parallel sections doesn't add more work for the serial section

No Pipelining!

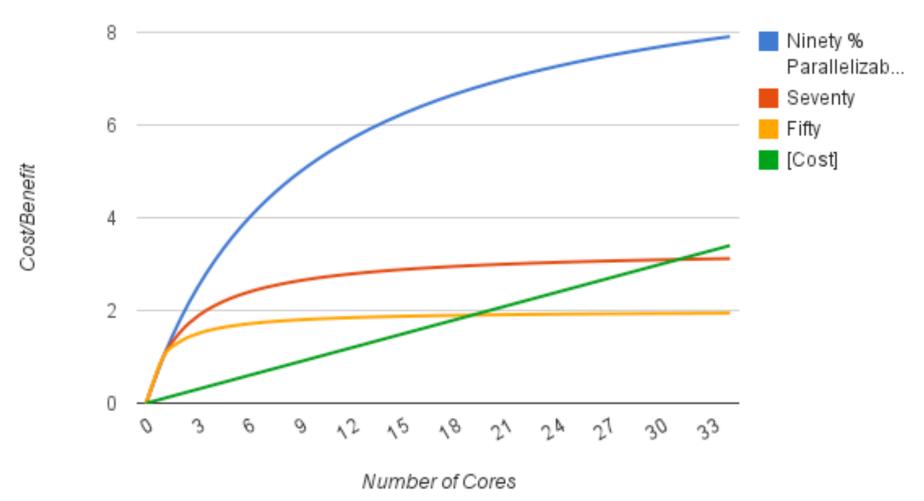
 Some apps can send partial solutions off to one parallel thread at a time

Amdahl: TO THE CLOUD

- Hourly computer rental
 - Speedup of 2x?
 - Twice the revenue!
 - Same rental fee!
- "Elastic" cluster size
 - Pay \$x for 1 core?
 - Via virtualization: Pay\$kx for k cores!
- Hardware price points
 - o m1.small, \$0.085/hr
 - 1x ~1.2 GHz
 - 1.7 GB RAM
 - oc1.xlarge, \$0.68/hr
 - 8x ~3 GHz
 - 7 GB RAM

(Most of these cost structures also hold even if you build your own rig -- more cores? Higher power bill!)

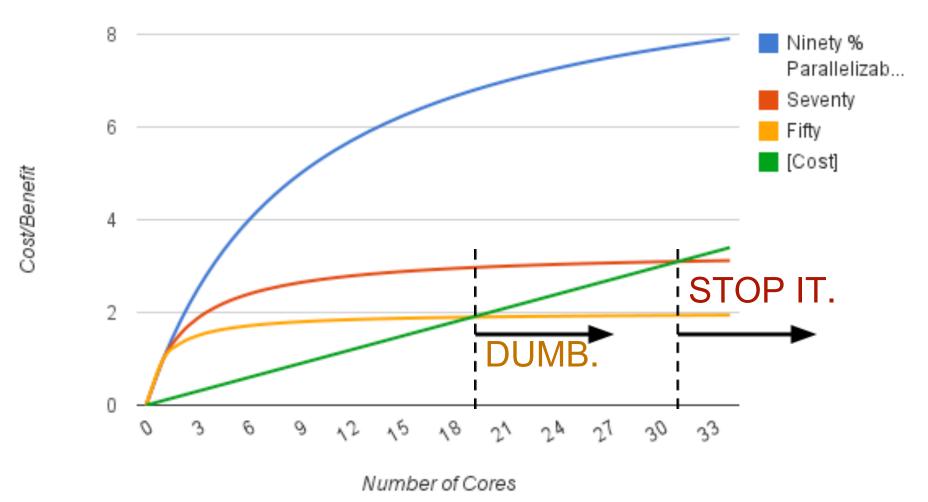
Amdahl: Costs and Benefits



- Benefits of more cores rise as Amdahl's Law
 f(N) speedup? f(N) more customers served!
- Costs of more cores rises linearly in N
 - Steeper slope = cheap customers, pricey cores, or both.

Amdahl: Costs and Benefits

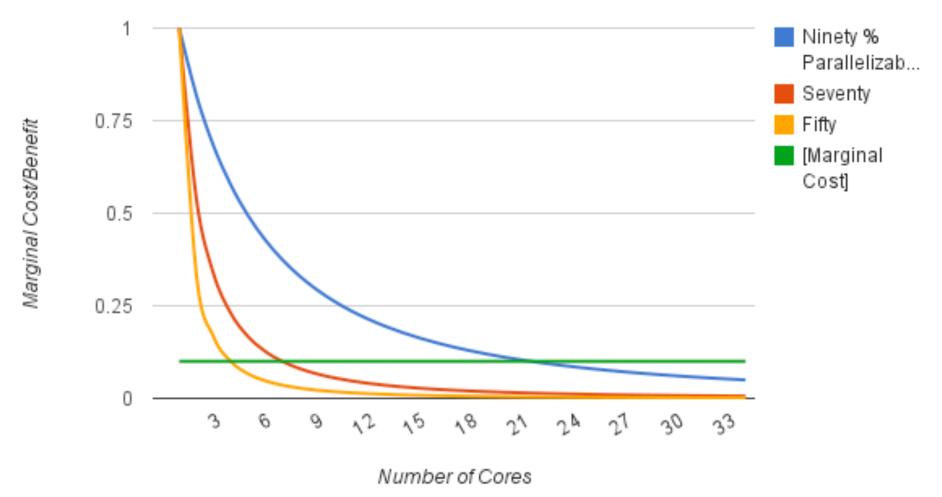
Amdahl's Costs v. Benefits



- Profit = Benefits Costs; should at least be positive
 - \circ Clear bounds on N for P = 50% and P = 70%
 - Note that both are quite asymptotic by that point anyway
- Insufficient to just have *positive* profit -- want the *maximum!*

Amdahl: Marginal Costs and Benefits

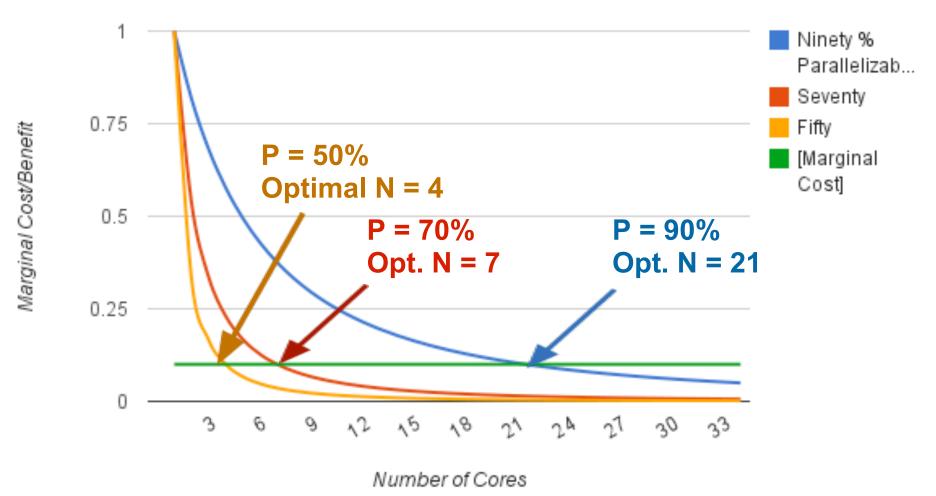
Amdahl's Marginal Costs v. Marginal Benefits



- Take the first derivative of both benefit and cost
- Find the point right before adding one more machine marginally costs more than it marginally benefits

Amdahl: Marginal Costs and Benefits

Amdahl's Marginal Costs v. Marginal Benefits



- Optimal N can occur quite a bit before asymptote kicks in
- If marginal cost rises a little, can cause Opt. N to drop a lot
- Bigger Opt. N --> More Speedup --> More Profit!

Sum-of-Squares Example

```
s = 0;
for(i = 0; i < 100; i++)
s += x[i]**2; // 2 Inst per loop
```

- Each iteration depends on the result of the iteration before!
- As written, unparallelizable:
 - P = **0** %
 - \circ max f(N) = 1/(1-P) = 1x speedup, max.
 - Have to run all 200 instructions serially!
 - ODOOOOM!

Sum-of-Squares: One Good Idea

```
s = 0;
for(i = 0; i < 100; i++)
    y[i] = x[i]**2; // square
for(i = 0; i < 100; i++)
    s += y[i]; // accumulate</pre>
```

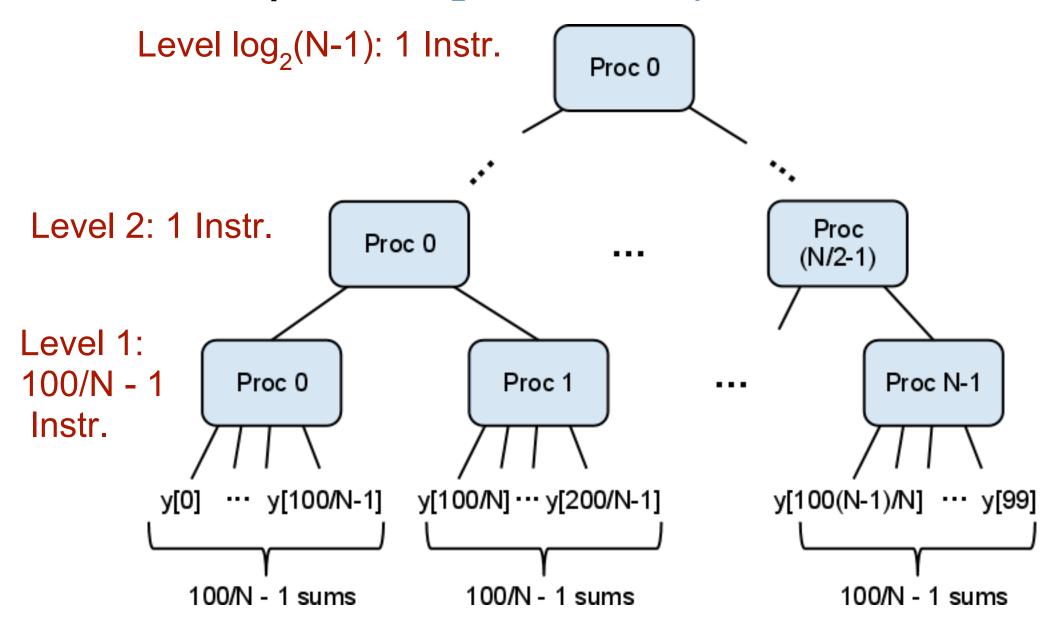
- Good idea: Break the loop into 2!
 - o First square, then sum
 - Use more memory to save time
- First loop now parallelizable:
 - P = **50** %
 - \circ max f(N) = 1/(1-P) = 2x speedup, max.
 - Even 2x speedup requires a gazillion cores (a gazillion dollars).
 - doooooooom.

Sum-of-Squares: One GREAT Idea

```
s = 0;
for(i = 0; i < 100; i++)
    y[i] = x[i]**2;
parAccum(y,100); //parallel accumulator</pre>
```

- GREAT idea: build a parallelizable accumulator
 - Sum Reduction from 10.14.11's lecture is our friend here!
- How close can we get to full parallelizability?
 - The better we build parAccum, the closer P gets to 100%

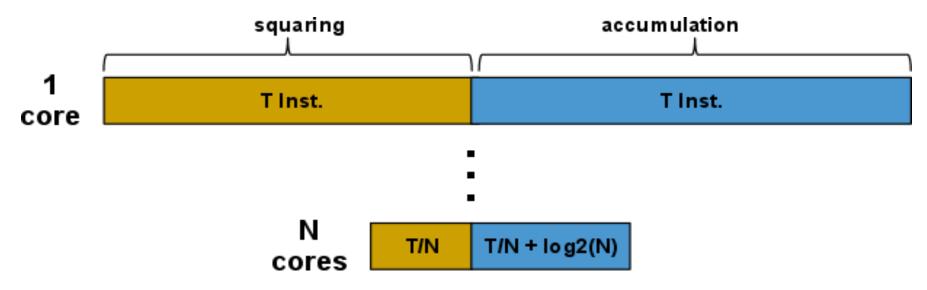
Sum-of-Squares: parAccum(y, 100)



TOTAL = $100/N + log_2(N-1) - 2$ steps to complete.

Sum-of-Squares: One GREAT Idea

```
s = 0;
for(i = 0; i < T; i++) // squaring loop
  y[i] = x[i]**2;
parAccum(y,T); //parallel accumulator</pre>
```



- N cores provide:
 - Linear reduction in squaring loop
 - Almost linear reduction in accumulation
 - For large T, smallish N, it's awful close to P = 100%

EC2 Usage

- Regular troughs at mid-day: Perfect for AWS!
- Peak usage: 292 instances
- Median usage:52
- Mean usage: 81.44
- About \$2,400!

