Amdahl's Law:
Parallelization

Economics

CS 61c, Nov. 30, 2011
Guest Lecture: Brian Gawalt

GOLDEN BEARS:

TODAY IN CS! BERKELEY POSTDOC IMPROVES
UNDERSTANDING OF MATRIX MULTIPLICATION!
Virginia Vassilevska Williams used convex optimization to
tighten the known worst-case upper bound on the
complexity of n-by-n mat. mult. from O(n*2.374) to O(n"2.
3727). A great theoretical result via a method that
suggests even tighter bounds exist & can be found soon!

http://www.scottaaronson.com/blog/?p=839

Parallel Processing: Familiar Obstacles

e Many hands make light
work!
o Execute instructions
simultaneously
e But parallelization is
haaaarrd....
o More workers? More
overhead!
o Shared data is hard to
coordinate
o Whine whine whine
whine whine

But once you have a parallel system...

... (after handling
synchronization...

... after finding a parallel
algorithm...

... after finding a

... and after
handling worker failures)...

.. Just add more cores forever and win!
. r-right”?

Array Copying Example

for(i=0;1i<100; i++) / With one core...
yli] = x[i]; // <-- 100 instr.
printf("DONE"); // <-- 10 instr.

e Takes about 110 instructions to run serially
o Assume magical AMAT of 1 cycle
o Assume magical cost-free 0-cycle
comparator/increment
o printf() is legacy code -- must be run serially
e IF we set up a successful parallelization scheme
(threading?), each loop iteration could be run in parallel
o Assume magical, no-collisions caching
o Assume no increased work for each new thread added

Array Copying Example

for(i=0;i<100; i++)
yli]l = x[i];

printf("DONE"); /[<-- 10 instr.

One core takes 110 instructions...

With this | ... loop |... printing ... for a
many takes... takes... | totaling... | speedup
cores... of:
2 50 instr. 10 instr. 60 instr.
4 25 instr. 10 instr. 35 instr.
8 13 instr. 10 instr. 23 instr.

2 to 4.
1.71x

4 to 8:
1.52x

Array Copying, Graphically

print copy loop

A A
[| |

L m 100 Inst.
core

2

Y -
cores

More cores can speed up

4 the parallelizable copy loop,
cores m 2 Inst but not the serial-only print
o routine
" Even in the limit of a gazillion cores, need at least
100+ one instruction to compute the loop.

cores BIGGEST POSSIBLE SPEEDUP: 110/11 = 10x

Amdahl's Law

fN) = ———
(1 - P) +W'
P := "Percentage" of code which is parallelizable

]
N := Number of cores used
f(N) := Amount of speedup code gains using N cores

Suggests a maximum possible speedup:

im fN)= Iim 1

N > N > 0 (1-P)+_:T

Amdahl's Law

f(N) = L -
(1 - P) +W

B Seventy

B Fifty
For our copying
example,
P=100/110 = 10/11
suggesting an
asymptote of
f(a gazillion) = 11

Speed-Up
;'_‘l 1

0
0 2 4 6 8 10 12 14 16 18 20
1 3 5 7 9 11 13 15 17 19

Number of Cores

Amdahl's Law's Assumptions

e No contention for
shared resources!

o All threads have equal
access to caches,
memory, 10, etc.

e No per-thread overhead!

o Adding more threads
to the parallel sections
doesn't add more work
for the serial section

e No Pipelining!

o Some apps can send
partial solutions off to
one parallel thread at
a time

l master thread

(Also, let's just
round off
quantization,
too!)

Amdahl: TO THE CLOUD

e Hourly computer rental
o Speedup of 2x?
m [wice the revenue!
m Same rental fee!
e "Elastic” cluster size
o Pay $x for 1 core?
o Via virtualization: Pay
$kx for k cores!
e Hardware price points
o m1.small, $0.085/hr

- 11X7~ gé giﬁ/l (Most of these cost structures
o o1 xlarge, $0 68/hr also hold even if you build
. . $0. ver]
m 8x ~3 GHz your own rig -- more cores:

. o
s 7 GB RAM Higher power bill!)

Amdahl: Costs and Benefits

Amdahl's Costs v. Benefits

B Ninety %
Parallelizab...

B Seventy
6 Fifty
B [Cost]

Cost/Benefit
SN

O % ® 9 a1 A% a® A oAb gl A D

Number of Cores
e Benefits of more cores rise as Amdahl's Law
o f(N) speedup? f(N) more customers served!
e Costs of more cores rises linearly in N
o Steeper slope = cheap customers, pricey cores, or both.

Amdahl: Costs and Benefits

Amdahl's Costs v. Benefits

B Ninety %
Parallelizah...
B Seventy
Fifty
- B [Cost]
l’d’:‘;
i 4
§
Q
STOP IT.

Number of Cores
e Profit = Benefits - Costs; should at least be positive
o Clear bounds on N for and P =70%
o Note that both are quite asymptotic by that point anyway
e Insufficient to just have positive profit -- want the maximum!

Amdahl: Marginal Costs and Benefits

Amdahl's Marginal Costs v. Marginal Benefits

1 B Ninety %
| Parallelizah...
B Seventy
0.75 Fifty
B [Marginal
Cost]

Marginal Cost/Benefit

0 —
% © 9 »\’L .\‘) -\% ny'\ n“h Al ’SQ rg’b

Number of Cores
e Take the first derivative of both benefit and cost

e Find the point right before adding one more machine
marginally costs more than it marginally benefits

Amdahl: Marginal Costs and Benefits

Amdahl's Marginal Costs v. Marginal Benefits

1 | B Ninety %
| Parallelizab...
B Seventy
0.75 iy
P=50% B [Marginal
Optimal N = 4 Cost

Marginal Cost/Benefit

3 % 9 A2 A% a® N qbh Al A0 D

» » »

Number of Cores

e Optimal N can occur quite a bit before asymptote kicks in
e If marginal cost rises a little, can cause Opt. N to drop a lot
e Bigger Opt. N --> More Speedup --> More Profit!

Sum-of-Squares Example

s =0;
for(i=0;i<100; i++)
s +=x[1]**2; // 2 Inst per loop

e Each iteration depends on the result of the iteration
before!
e As written, unparallelizable:
oP=0%
o max f(N) = 1/(1-P) = 1x speedup, max.
o Have to run all 200 instructions serially!

o DOOOOOOM!

Sum-of-Squares: One Good ldea

s =0;
for(i=0;i<100; i++)

yli] = x[i]**2; // square
for(i=0;i<100; i++)

s +=yli]; // accumulate

e Good idea: Break the loop into 2!
o First square, then sum
o Use more memory to save time
e First loop now parallelizable:
oP=50%
o max f(N) = 1/(1-P) = 2x speedup, max.
o Even 2x speedup requires a gazillion cores

(a gazilllion dollars). [2
o dooooooooom. "

Sum-of-Squares: One GREAT Idea

s =0;
for(i=0;i<100; i++)
ylil = x[i]**2;
parAccum(y,100); //parallel accamulator

e GREAT idea: build a parallelizable
accumulator
o Sum Reduction from 10.14.11's lecture is
our friend herel
e How close can we get to full parallelizability?
o The better we build parAccum, the closer P

gets to 100%

Sum-of-Squares: parAccum(y, 100)
Level log,(N-1): 1 Instr. [oroc o }

-~ AN

P]\ [/;;;ﬂ\
|1_8\(;/GII\|1.:1 [Proc 0 J [Proc 1] [Proc N-1]
St TN JTTN JTT\

y[0] -+ y[100/N-1] y[100/N] -+ y[200/N-1] y[100(N-1)/N] ==+ y[99]

\] | J \ J
| | |
100/N - 1 sums 100/N - 1 sums 100/N - 1 sums

TOTAL =100/N + log,(N-1) - 2 steps to complete.

Level 2: 1 Instr. [Proc 0

Sum-of-Squares: One GREAT Idea

s = 0;

for(i=0;i<T;it+) // squaring loop
yli] = x[i] **2;

parAccum(y,T); //parallel accumulator

squaring accumulation

A A
I \/ \

res ™ [Tnsioszo0]
cores

e N cores provide:
o Linear reduction in squaring loop
o Almost linear reduction in accumulation
o For large T, smallish N, it's awful close to P = 100%

1
core

EC2 Usage

e Regular troughs
at mid-day:
Perfect for AWS!

e Peak usage: 292
iInstances

e Median usage:
92

e Mean usage:
81.44

e About $2,400!

No. of EC2 Instances (c1.medium)

N9E

—

150

CS61c Project 2, EC2 Usage

