

# Amdahl's Law: Parallelization Economics



CS 61c, Nov. 30, 2011 Guest Lecture: Brian Gawalt

# TODAY IN CS! BERKELEY POSTDOC IMPROVES UNDERSTANDING OF MATRIX MULTIPLICATION!

Virginia Vassilevska Williams used convex optimization to tighten the known worst-case upper bound on the complexity of *n*-by-*n* mat. mult. from **O**(**n**^2.374) to **O**(**n**^2.3727). A great theoretical result via a method that suggests even tighter bounds exist & can be found soon!

http://www.scottaaronson.com/blog/?p=839

# Parallel Processing: Familiar Obstacles

- Many hands make light work!
  - Execute instructions simultaneously
- But parallelization is haaaarrd....
  - More workers? More overhead!
  - Shared data is hard to coordinate
  - Whine whine whine whine whine



# But once you have a parallel system...

... (after handling synchronization...

... after finding a parallel algorithm...

... after finding a memory solution...

... and after handling worker failures)...



... just add more cores forever and win! ... r-right?

# Array Copying Example

```
for(i = 0; i < 100; i++) // With one core...
y[i] = x[i]; // <-- 100 instr.
printf("DONE"); // <-- 10 instr.
```

- Takes about 110 instructions to run serially
  - Assume magical AMAT of 1 cycle
  - Assume magical cost-free 0-cycle comparator/increment
  - printf() is legacy code -- must be run serially
- IF we set up a successful parallelization scheme (threading?), each loop iteration could be run in parallel
  - Assume magical, no-collisions caching
  - Assume no increased work for each new thread added

# Array Copying Example

```
for(i = 0; i < 100; i++)
y[i] = x[i];
printf("DONE"); // <-- 10 instr.
```

#### One core takes 110 instructions...

| With this many cores | loop<br>takes | printing takes | <br>totaling | for a speedup of: |                  |
|----------------------|---------------|----------------|--------------|-------------------|------------------|
| 2                    | 50 instr.     | 10 instr.      | 60 instr.    | 1.83x             | 2 to 4:<br>1.71x |
| 4                    | 25 instr.     | 10 instr.      | 35 instr.    | 3.14x             | 4 to 8:<br>1.52x |
| 8                    | 13 instr.     | 10 instr.      | 23 instr.    | 4.78x             | 1.52x            |

# Array Copying, Graphically



## Amdahl's Law

$$f(N) = \frac{1}{(1 - P) + \frac{P}{N}}$$

P := "Percentage" of code which is parallelizable

N := Number of cores used

**f(N)** := Amount of speedup code gains using N cores

Suggests a maximum possible speedup:

$$\lim_{N \to \infty} f(N) = \lim_{N \to \infty} \frac{1}{(1 - P) + \frac{P}{N}} = \frac{1}{1 - P}$$

## Amdahl's Law

$$f(N) = \frac{1}{(1 - P) + \frac{P}{N}}$$

Amdahl's Law for P = 70% and P = 50%



For our copying example,

Seventy

Fifty

P = 100/110 = 10/11 suggesting an asymptote of

$$f(a gazillion) = 11$$

## Amdahl's Law's Assumptions

#### No contention for shared resources!

 All threads have equal access to caches, memory, IO, etc.

#### No per-thread overhead!

 Adding more threads to the parallel sections doesn't add more work for the serial section

#### No Pipelining!

 Some apps can send partial solutions off to one parallel thread at a time



## Amdahl: TO THE CLOUD

- Hourly computer rental
  - Speedup of 2x?
    - Twice the revenue!
    - Same rental fee!
- "Elastic" cluster size
  - Pay \$x for 1 core?
  - Via virtualization: Pay\$kx for k cores!
- Hardware price points
  - o m1.small, \$0.085/hr
    - 1x ~1.2 GHz
    - 1.7 GB RAM
  - oc1.xlarge, \$0.68/hr
    - 8x ~3 GHz
    - 7 GB RAM



(Most of these cost structures also hold even if you build your own rig -- more cores? Higher power bill!)

## Amdahl: Costs and Benefits





- Benefits of more cores rise as Amdahl's Law
   f(N) speedup? f(N) more customers served!
- Costs of more cores rises linearly in N
  - Steeper slope = cheap customers, pricey cores, or both.

## Amdahl: Costs and Benefits

#### Amdahl's Costs v. Benefits



- Profit = Benefits Costs; should at least be positive
  - $\circ$  Clear bounds on N for P = 50% and P = 70%
  - Note that both are quite asymptotic by that point anyway
- Insufficient to just have *positive* profit -- want the *maximum!*

# Amdahl: Marginal Costs and Benefits

#### Amdahl's Marginal Costs v. Marginal Benefits



- Take the first derivative of both benefit and cost
- Find the point right before adding one more machine marginally costs more than it marginally benefits

# Amdahl: Marginal Costs and Benefits

#### Amdahl's Marginal Costs v. Marginal Benefits



- Optimal N can occur quite a bit before asymptote kicks in
- If marginal cost rises a little, can cause Opt. N to drop a lot
- Bigger Opt. N --> More Speedup --> More Profit!

# Sum-of-Squares Example

```
s = 0;
for(i = 0; i < 100; i++)
s += x[i]**2; // 2 Inst per loop
```

- Each iteration depends on the result of the iteration before!
- As written, unparallelizable:
  - P = **0** %
  - $\circ$  max f(N) = 1/(1-P) = 1x speedup, max.
  - Have to run all 200 instructions serially!
  - ODOOOOM!



# Sum-of-Squares: One Good Idea

```
s = 0;
for(i = 0; i < 100; i++)
    y[i] = x[i]**2; // square
for(i = 0; i < 100; i++)
    s += y[i]; // accumulate</pre>
```

- Good idea: Break the loop into 2!
  - o First square, then sum
  - Use more memory to save time
- First loop now parallelizable:
  - P = **50** %
  - $\circ$  max f(N) = 1/(1-P) = 2x speedup, max.
  - Even 2x speedup requires a gazillion cores (a gazillion dollars).
  - doooooooom.



# Sum-of-Squares: One GREAT Idea

```
s = 0;
for(i = 0; i < 100; i++)
    y[i] = x[i]**2;
parAccum(y,100); //parallel accumulator</pre>
```

- GREAT idea: build a parallelizable accumulator
  - Sum Reduction from 10.14.11's lecture is our friend here!
- How close can we get to full parallelizability?
  - The better we build parAccum, the closer P gets to 100%

# Sum-of-Squares: parAccum(y, 100)



TOTAL =  $100/N + log_2(N-1) - 2$  steps to complete.

# Sum-of-Squares: One GREAT Idea

```
s = 0;
for(i = 0; i < T; i++) // squaring loop
  y[i] = x[i]**2;
parAccum(y,T); //parallel accumulator</pre>
```



- N cores provide:
  - Linear reduction in squaring loop
  - Almost linear reduction in accumulation
  - For large T, smallish N, it's awful close to P = 100%

# EC2 Usage

- Regular troughs at mid-day: Perfect for AWS!
- Peak usage: 292 instances
- Median usage:52
- Mean usage: 81.44
- About \$2,400!

