TODAY IN CS! BERKELEY POSTDOC IMPROVES UNDERSTANDING OF MATRIX MULTIPLICATION!
Virginia Vassilevska Williams used convex optimization to tighten the known worst-case upper bound on the complexity of n-by-n mat. mult. from $O(n^{2.374})$ to $O(n^{2.3727})$. A great theoretical result via a method that suggests even tighter bounds exist & can be found soon!

http://www.scottaaronson.com/blog/?p=839
Parallel Processing: Familiar Obstacles

- Many hands make light work!
 - Execute instructions simultaneously
- But parallelization is hard....
 - More workers? More overhead!
 - Shared data is hard to coordinate
 - Whine whine whine whine whine
But once you have a parallel system...

... (after handling synchronization...)

... after finding a parallel algorithm...

... after finding a memory solution...

... and after handling worker failures)...

... just add more cores forever and win! ... r-right?
Array Copying Example

```c
for(i = 0; i < 100; i++) // With one core...
    y[i] = x[i];       // <-- 100 instr.
printf("DONE");     // <-- 10 instr.
```

- Takes about 110 instructions to run serially
 - Assume magical AMAT of 1 cycle
 - Assume magical cost-free 0-cycle comparator/increment
 - `printf()` is legacy code -- must be run serially
- **IF** we set up a successful parallelization scheme (threading?), each loop iteration could be run in parallel
 - Assume magical, no-collisions caching
 - Assume no increased work for each new thread added
Array Copying Example

```c
for(i = 0; i < 100; i++)
    y[i] = x[i];
printf("DONE");  // <-- 10 instr.
```

One core takes 110 instructions...

<table>
<thead>
<tr>
<th>With this many cores...</th>
<th>... loop takes...</th>
<th>... printing takes...</th>
<th>... totaling...</th>
<th>... for a speedup of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>50 instr.</td>
<td>10 instr.</td>
<td>60 instr.</td>
<td>1.83x</td>
</tr>
<tr>
<td>4</td>
<td>25 instr.</td>
<td>10 instr.</td>
<td>35 instr.</td>
<td>3.14x</td>
</tr>
<tr>
<td>8</td>
<td>13 instr.</td>
<td>10 instr.</td>
<td>23 instr.</td>
<td>4.78x</td>
</tr>
</tbody>
</table>

2 to 4: 1.71x
4 to 8: 1.52x
Array Copying, Graphically

More cores can speed up the parallelizable copy loop, but not the serial-only print routine.

Even in the limit of a gazillion cores, need at least one instruction to compute the loop.

BIGGEST POSSIBLE SPEEDUP: $\frac{110}{11} = 10x$
Amdahl's Law

\[f(N) = \frac{1}{(1 - P) + \frac{P}{N}} \]

- \(P \) := "Percentage" of code which is parallelizable
- \(N \) := Number of cores used
- \(f(N) \) := Amount of speedup code gains using \(N \) cores

suggests a maximum possible speedup:

\[\lim_{N \to \infty} f(N) = \lim_{N \to \infty} \frac{1}{(1 - P) + \frac{P}{N}} = \frac{1}{1 - P} \]
Amdahl's Law

\[f(N) = \frac{1}{(1 - P) + \frac{P}{N}} \]

For our copying example, \(P = \frac{100}{110} = \frac{10}{11} \) suggesting an asymptote of \(f(a \text{ gazillion}) = 11 \).
Amdahl's Law's Assumptions

- **No contention for shared resources!**
 - All threads have equal access to caches, memory, IO, etc.

- **No per-thread overhead!**
 - Adding more threads to the parallel sections doesn't add more work for the serial section

- **No Pipelining!**
 - Some apps can send partial solutions off to one parallel thread at a time

(Also, let's just round off quantization, too!)
Amdahl: TO THE CLOUD

- Hourly computer rental
 - Speedup of 2x?
 - Twice the revenue!
 - Same rental fee!
- "Elastic" cluster size
 - Pay $x for 1 core?
 - Via virtualization: Pay $kx for k cores!
- Hardware price points
 - m1.small, $0.085/hr
 - 1x ~1.2 GHz
 - 1.7 GB RAM
 - c1.xlarge, $0.68/hr
 - 8x ~3 GHz
 - 7 GB RAM

(Most of these cost structures also hold even if you build your own rig -- more cores? Higher power bill!)
Amdahl: Costs and Benefits

- Benefits of more cores rise as Amdahl's Law
 - $f(N)$ speedup? $f(N)$ more customers served!
- Costs of more cores rises linearly in N
 - Steeper slope = cheap customers, pricey cores, or both.
Amdahl: Costs and Benefits

- Profit = Benefits - Costs; should *at least* be positive
 - Clear bounds on N for \(P = 50\% \) and \(P = 70\% \)
 - Note that both are quite asymptotic by that point anyway
- Insufficient to just have *positive* profit -- want the *maximum*!
Amdahl: Marginal Costs and Benefits

- Take the first derivative of both benefit and cost
- Find the point right before adding one more machine marginally costs more than it marginally benefits
Amdahl: **Marginal** Costs and Benefits

Amdahl's Marginal Costs v. Marginal Benefits

- P = 50%
 - Optimal N = 4
- P = 70%
 - Opt. N = 7
- P = 90%
 - Opt. N = 21

- Optimal N can occur quite a bit before asymptote kicks in
- If marginal cost rises a little, can cause Opt. N to drop a lot
Sum-of-Squares Example

```
s = 0;
for(i = 0; i < 100; i++)
    s += x[i]**2;    // 2 Inst per loop
```

- Each iteration depends on the result of the iteration before!
- As written, unparallelizable:
 - P = 0 %
 - max f(N) = 1/(1-P) = 1x speedup, max.
 - Have to run all 200 instructions serially!
 - DOOOOOOM!
Sum-of-Squares: One Good Idea

```c
s = 0;
for(i = 0; i < 100; i++)
  y[i] = x[i]**2;  // square
for(i = 0; i < 100; i++)
  s += y[i];    // accumulate
```

- Good idea: Break the loop into 2!
 - First square, then sum
 - Use more memory to save time
- First loop now parallelizable:
 - $P = 50\%$
 - $\text{max } f(N) = 1/(1-P) = 2x$ speedup, max.
 - Even 2x speedup requires a gazillion cores (a gazillion dollars).
 - dooooooooom.
Sum-of-Squares: One GREAT Idea

```c
s = 0;
for(i = 0; i < 100; i++)
    y[i] = x[i]**2;
parAccum(y,100); //parallel accumulator
```

- GREAT idea: build a parallelizable accumulator
 - Sum Reduction from 10.14.11's lecture is our friend here!
- How close can we get to full parallelizability?
 - The better we build `parAccum`, the closer P gets to 100%
Sum-of-Squares: \(\text{parAccum}(y, 100) \)

Level \(\log_2(N-1) \): 1 Instr.

Level 2: 1 Instr.

Level 1: \(\frac{100}{N} - 1 \) Instr.

TOTAL = \(\frac{100}{N} + \log_2(N-1) \) - 2 steps to complete.
Sum-of-Squares: One GREAT Idea

\[s = 0; \]
\[\text{for}(i = 0; i < T; i++) \] // squaring loop
\[y[i] = x[i]^{**2}; \]
\[\text{parAccum}(y, T); \] //parallel accumulator

- N cores provide:
 - Linear reduction in squaring loop
 - Almost linear reduction in accumulation
 - For large T, smallish N, it's awful close to \(P = 100\% \)
EC2 Usage

- Regular troughs at mid-day: Perfect for AWS!
- Peak usage: 292 instances
- Median usage: 52
- Mean usage: 81.44
- About $2,400!