New-School Machine Structures
(It’s a bit more complicated!)

- Parallel Requests
 - Assigned to computer
 - e.g., Search “Katz”
- Parallel Threads
 - Assigned to core
 - e.g., Lookup, Ads
- Parallel Instructions
 - >1 instruction @ one time
 - e.g., 5 pipelined instructions
- Parallel Data
 - >1 data item @ one time
 - e.g., Add of 4 pairs of words
- Hardware descriptions
 - All gates @ one time

Register Allocation and Numbering

<table>
<thead>
<tr>
<th>Name</th>
<th>Register number</th>
<th>Value</th>
<th>Preserved on call?</th>
</tr>
</thead>
<tbody>
<tr>
<td>x0</td>
<td>0</td>
<td>0</td>
<td>yes</td>
</tr>
<tr>
<td>x1</td>
<td>1</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>x2</td>
<td>2</td>
<td>2</td>
<td>yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Six Fundamental Steps in Calling a Function
1. Put parameters in a place where function can access them
2. Transfer control to function
3. Acquire (local) storage resources needed for function
4. Perform desired task of the function
5. Put result value in a place where calling program can access it and restore any registers you used
6. Return control to point of origin, since a function can be called from several points in a program
MIPS Function Call Instructions

- **Invoke function:** `jump and link` instruction (`jal`)
 - “link” means form an address or link that points to
 calling site to allow function to return to proper address
 - Jumps to address and simultaneously saves the address
 of following instruction in register `$ra`

- **Return from function:** `jump register` instruction (`jr`)
 - Unconditional jump to address specified in register
 `$ra`

Notes on Functions

- Calling program (caller) puts parameters into
 registers `$a0-$a3` and uses `jal X` to invoke X (callee)
- Must have register in computer with address of
 currently executing instruction
 - Instead of Instruction Address Register (better name),
 historically called Program Counter (PC)
 - It's a program's counter, it doesn't count programs!
- `$ra` puts address inside `$ra` into PC
- What value does `jal X` place into `$ra`?
 - Next PC

Where Are Old Register Values Saved to Restore Them After Function Call

- Need a place to save old values before call function,
 restore them when return, and delete
- Ideal is stack: last-in-first-out queue
 (e.g., stack of plates)
 - Push: placing data onto stack
 - Pop: removing data from stack
- Stack in memory, so need register to point to it
 - `$sp` is the stack pointer in MIPS
- Convention is grow from high to low addresses
 - Push decrements `$sp`, Pop increments `$sp`
- (28 out of 32, 4 left!)

Example

```c
int leaf_example (int g, int h, int i, int j)
{
    int f;
    f = (g + h) - (i + j);
    return f;
}
```

- Parameter variables `g, h, i, and j` in argument
 registers `$a0, $a1, $a2`, and `$a3`, and `f` in `$s0`
- Assume need one temporary register `$t0`

Stack Before, During, After Function

- Need to save old values of `$s0` and `$t0`

MIPS Code for leaf_example

```assembly
leaf_example:
    addi $sp,$sp,-8  # adjust stack for 2 int items
    sw $t0, 4($sp)   # save $t0 for use afterwards
    sw $s0, 0($sp)   # save $s0 for use afterwards
    add $s0,$a0,$a1  # f = g + h
    add $t0,$a2,$a3  # $t0 = i + j
    sub $v0,$s0,$t0  # return value (g + h) – (i + j)
    lw $s0, 0($sp)   # restore register $s0 for caller
    lw $t0, 4($sp)   # restore register $t0 for caller
    addi $sp,$sp,8   # adjust stack to delete 2 items
    jr $ra           # jump back to calling routine
```
What will the printf output?

- Print -4
- Print 4
- a.out will crash
- None of the above

 Really?

```
static int *p;
int leaf (int g, int h, int i, int j)
{
    int f; p = &f;
    f = (g + h) - (i + j);
    return f;
}

int main(void { int x;
    x = leaf(1,2,3,4);
    x = leaf(3,4,1,2);

    printf("%d\n",*p);
}
```

What If a Function Calls a Function? Recursive Function Calls?

- Would clobber values in $a0 to $a3 and $ra?
- What is the solution?

Allocating Space on Stack

- C has two storage classes: automatic and static
 - Automatic variables are local to function and discarded when function exits
 - Static variables exist across exits from and entries to procedures
- Use stack for automatic (local) variables that don’t fit in registers
 - Procedure frame or activation record: segment of stack with saved registers and local variables
- Some MIPS compilers use a frame pointer (fp) to point to first word of frame
 - (29 of 32, 3 left!)

Stack Before, During, After Call

Recursive Function Factorial

```
int fact (int n)
{
    if (n < 1) return (1);
    else return (n * fact(n-1));
}
```

Recursive Function Factorial

```
Fact:  
L1:  
\# adjust stack for 2 items
addi $sp,$sp,-8  
\# save return address
sw $ra, 4($sp)  
\# save argument n
sw $a0, 2($sp)  
\# test for n < 1
slt $t0,$a0,1  
\# if n >= 1, go to L1
beq $t0,$zero,L1  
\# Then part (n==1) return 1
addi $v0,$zero,1  
\# pop 2 items off stack
addi $sp,$sp,8  
\# return to caller
jr $ra
```

mul is a pseudo instruction
Optimized Function Convention

To reduce expensive loads and stores from spilling and restoring registers, MIPS divides registers into two categories:

1. Preserved across function call
 - Caller can rely on values being unchanged
 - $ra, $sp, $gp, $fp, “saved registers” $a0-$s7

2. Not preserved across function call
 - Caller cannot rely on values being unchanged
 - Return value registers $v0,$v1, Argument registers $a0-$a3, “temporary registers” $t0-$t9

Where is the Stack in Memory?

- MIPS convention
- Stack starts in high memory and grows down
 - Hexadecimal (base 16): 7ffe ffff
- MIPS programs (text segment) in low end
 - 0040 0000
- static data segment (constants and other static variables) above text for static variables
 - MIPS convention global pointer ($gp) points to static
 - (30 of 32, 2 left! – will see when talk about OS)
- Heap above static for data structures that grow and shrink; grows up to high addresses

MIPS Memory Allocation

Register Allocation and Numbering

- MIPS uses jal to invoke a function and jr to return from a function
- jal saves PC+1 in %ra
- The callee can use temporary registers (%t) without saving and restoring them
- The caller can rely on save registers (%s) without fear of callee changing them

Agenda

- Review
- Functions
- Administrivia
- Everything is a Number
- And in Conclusion, …
Big Idea #1: Levels of Representation/Interpretation

- High-Level Language
 - Program (e.g., C)
 - Compiler
 - Assembly Language
 - Program (e.g., MIPS)
 - Assembler

Machine Interpretation

- Hardware Architecture Description
 (e.g., block diagrams)
- Logic Circuit Description
 (Circuit Schematic Diagrams)

Number Representation

- Value of i-th digit is $d \times Base^i$ where i starts at 0 and increases from right to left:
 - $123_{10} = 3 \times 10^0 + 2 \times 10^1 + 1 \times 10^2$
 - $1x1001_2 + 2x1010_2 + 3x1_2$
 - $100_{10} + 20_{10} + 3_{10}$
 - 123_{10}
- Binary (Base 2), Hexadecimal (Base 16), Decimal (Base 10) different ways to represent an integer
 - We use 1100_2 instead of 10_{10} to be clearer (vs. 1_2, A_{16}, 10_{10})

Key Concepts

- Inside computers, everything is a number
- Anything can be represented as a number, i.e., data or instructions

Project #1

Document:

"It was the best of times, it was the worst of times"
- 1-grams: it was the best of times worst
 - it was: distance 1, it-the: distance 2, it-best: distance 3, ...
- 2-grams: it was, was the, the best, best of, of times
 - it was—the: distance 1, it was—the best: distance 2, it was—best of: distance 3, ...
- 3-grams: it was the, was the best, of best of, of times,
 - it was the worst, of worst of times
 - etc.

Agenda

- Review
- Functions
- Administrivia
- Everything is a Number
- And in Conclusion, ...

Implement

- Mapper 1
 - Occurrences A_{mx}: 4, A_{lsw}: 2, A_{isw}: 3
 - Target word = Dave
 - $\Delta v_{mx} = A_{mx}$
 - $\Delta v_{lsw} = \Delta v_{isw} = 2$
 - Co-occurrence with Krste: $C_{mx} = \log(v_{mx}) / \log(10) = 3 * \log(2) / 2 + 0.05$
 - Co-occurrence with Randy: $C_{lsw} = \log(v_{lsw}) / \log(10) = 3 * \log(2) / 2 + 0.03$
- Your task: compute and sort co-occurrence for n-gram (for small n) word sequences, using several distance weighting functions

But everything is of a fixed size
- 8-bit bytes, 16-bit half words, 32-bit words, 64-bit double words, ...
- Integer and floating point operations can lead to results too big to store within their representations: overflow/underflow

Representations:

- Target word = Dave
- $\Delta v_{mx} = A_{mx}$
- $\Delta v_{lsw} = \Delta v_{isw} = 2$
- Co-occurrence with Randy: $C_{mx} = \log(v_{mx}) / \log(10) = 3 * \log(2) / 2 + 0.05$
- Co-occurrence with Krste: $C_{lsw} = \log(v_{lsw}) / \log(10) = 3 * \log(2) / 2 + 0.03$
- Your task: compute and sort co-occurrence for n-gram (for small n) word sequences, using several distance weighting functions

Inside computers, everything is a number
- Integer and floating point operations can lead to results too big to store within their representations: overflow/underflow
Number Representation

- Hexadecimal digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- $\text{FFF}_{\text{hex}} = 15_{\text{ten}} \times 16_{\text{ten}} ^ 0 + 15_{\text{ten}} \times 16_{\text{ten}} ^ 1 + 15_{\text{ten}} \times 16_{\text{ten}} ^ 2 = 3840_{\text{ten}} + 240_{\text{ten}} + 15_{\text{ten}} = 4095_{\text{ten}}$
- $\text{1111 1111}_{\text{two}} = \text{FFF}_{\text{hex}} = 4095_{\text{ten}}$
- May put blanks every group of binary, octal, or hexadecimal digits to make it easier to parse, like commas in decimal

Signed and Unsigned Integers

- C, C++, and Java have signed integers, e.g., 7, -255:
 \[
 \text{int } x, y, z;
 \]
- C, C++ also have unsigned integers, which are used for addresses
- 32-bit word can represent 2^{32} binary numbers
-Unsigned integers in 32 bit word represent 0 to $2^{32}-1$ (4,294,967,295)

Unsigned Integers

- $0000 0000 0000 0000 0000 0000 0000 0000 = 0_{\text{dec}}$
- $1000 0000 0000 0000 0000 0000 0000 0000 = 2^{32}-1 = 4294967295_{\text{dec}}$

Signed Integers and Two’s Complement Representation

- Signed integers in C; want $\frac{1}{2}$ numbers <0, want $\frac{1}{2}$ numbers >0, and want one 0
- Two’s complement treats 0 as positive, so 32-bit word represents 2^{32} integers from -2^{31} to $2^{31}-1$ (2,147,483,647)
 - Note: one negative number with no positive version
 - Book lists some other options, all of which are worse
 - Every computers uses two’s complement today
- Most significant bit (leftmost) is the sign bit, since 0 means positive (including 0), 1 means negative
- Bit 31 is most significant, bit 0 is least significant

Suppose we had a 5 bit word. What integers can be represented in two’s complement?

- -32 to +31
- 0 to +31
- -16 to +15
- -15 to +16

Two’s Complement Integers

- $0000 0000 0000 0000 0000 0000 0000 0000 = 0_{\text{dec}}$
- $0111 1111 1111 1111 1111 1111 1111 1111 = -1_{\text{dec}}$
- $1000 0000 0000 0000 0000 0000 0000 0000 = -1_{\text{dec}}$
- $1111 1111 1111 1111 1111 1111 1111 1111 = -1_{\text{dec}}$
- $1111 1111 1111 1111 1111 1111 1111 1110 = -2_{\text{dec}}$
- $1111 1111 1111 1111 1111 1111 1111 1101 = -3_{\text{dec}}$
MIPS Logical Instructions

- Useful to operate on fields of bits within a word — e.g., characters within a word (8 bits)
- Operations to pack /unpack bits into words
- Called logical operations

<table>
<thead>
<tr>
<th>Logical operations</th>
<th>C operators</th>
<th>Java operators</th>
<th>MIPS instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit-by-bit AND</td>
<td>&</td>
<td>&</td>
<td>and</td>
</tr>
<tr>
<td>Bit-by-bit OR</td>
<td></td>
<td></td>
<td>or</td>
</tr>
<tr>
<td>Bit-by-bit NOT</td>
<td>~</td>
<td>~</td>
<td>nor</td>
</tr>
<tr>
<td>Shift left</td>
<td><<</td>
<td><<</td>
<td>sll</td>
</tr>
<tr>
<td>Shift right</td>
<td>>></td>
<td>>></td>
<td>srl</td>
</tr>
</tbody>
</table>

Bit-by-bit Definition

<table>
<thead>
<tr>
<th>Operation</th>
<th>Input 1</th>
<th>Input 2</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AND</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>AND</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AND</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>OR</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OR</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>OR</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>OR</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NOR</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NOR</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>NOR</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NOR</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Examples

- If register $t2$ contains and $\text{0000 0000 0000 0000 0000 1101 1100 0000}_2$
- Register $t1$ contains $\text{0000 0000 0000 0000 0011 1100 0000 0000}_2$
- What is the value of $t0$ after:
 - and $t0, t1, t2 \# \text{reg } t0 = \text{reg } t1 \& \text{reg } t2$

- If register $t2$ contains and $\text{0000 0000 0000 0000 0000 1101 1100 0000}_2$
- Register $t1$ contains $\text{0000 0000 0000 0000 0011 1100 0000 0000}_2$
- What is the value of $t0$ after:
 - or $t0, t1, t2 \# \text{reg } t0 = \text{reg } t1 \| \text{reg } t2$

- If register $t2$ contains and $\text{0000 0000 0000 0000 0000 1101 1100 0000}_2$
- Register $t1$ contains $\text{0000 0000 0000 0000 0011 1100 0000 0000}_2$
- What is the value of $t0$ after:
 - or $t0, t1, t2 \# \text{reg } t0 = \text{reg } t1 \| \text{reg } t2$

- If register $t2$ contains and $\text{0000 0000 0000 0000 0000 1101 1100 0000}_2$
- Register $t1$ contains $\text{0000 0000 0000 0000 0011 1100 0000 0000}_2$
- What is the value of $t0$ after:
 - or $t0, t1, t2 \# \text{reg } t0 = \text{reg } t1 \| \text{reg } t2$
Examples

• If register $t2$ contains and
 0000 0000 0000 0000 0000 1101 1100 0000_{two}
 Register $t1$ contains
 0000 0000 0000 0000 0000 0000 0000_{two}
 What is value of $t0$ after:
 nor $t0, t1, $zero #
 $t0 = ~ (reg $t1 | 0)

Examples

• If register $t2$ contains and
 0000 0000 0000 0000 0000 1101 1100 0000_{two}
 Register $t1$ contains
 0000 0000 0000 0000 0011 1100 0000 0000_{two}
 What is value of $t0$ after:
 nor $t0, t1, $zero #
 1111 1111 1111 1111 1110 0011 1111 1111_{two}

Shifting

• Shift left logical moves n bits to the left
 (insert 0s into empty bits)
 — Same as multiplying by 2^n for two's complement number
 • For example, if register $s0$ contained
 0000 0000 0000 0000 0000 0000 1001 0101_{two}
 And $s0 \times 2_{ten} = s0 \times 16_{ten} = 144_{ten}$
 • If executed sll $s0, s0, 4$, result is:
 0000 0000 0000 0000 0000 0000 1001 0000_{two}

Shifting

• Shift right arithmetic moves n bits to the right
 (insert high order sign bit into empty bits)
 • For example, if register $s0$ contained
 1111 1111 1111 1111 1111 1111 1111 1111_{two} -25_{ten}
 If executed sra $s0, s0, 4$, result is:
 0000 0000 0000 0000 0000 0000 0000 0000_{two} 3_{ten}
Shifting

- Shift right arithmetic moves n bits to the right (insert high order sign bit into empty bits)
- For example, if register $s0$ contained
 \[1111 1111 1111 1111 1111 1101 0111 \] (insert high order sign bit into empty bits)
- If executed `sra $s0, $s0, 4`, result is:
 \[1111 1111 1111 1111 1111 1111 1110 0111 \] (two's complement)
- Unfortunately, this is NOT same as dividing by 2^n
 - Fails for odd negative numbers
 - C arithmetic semantics is that division should round towards 0

Impact of Signed and Unsigned Integers on Instruction Sets

- What (if any) instructions affected?
 - Load word, store word?
 - branch equal, branch not equal?
 - and, or, sll, srl?
 - add, sub, mult, div?
 - slli (set less than immediate)?

“And in Conclusion, ...”

- C is function oriented; code reuse via functions
 - Jump and link (`jal`) invokes, jump register (`jr $ra`) returns
 - Registers $a0-$a3 for arguments, $v0-$v1 for return values
 - Stack for spilling registers, nested function calls, C local (automatic) variables
- Program can interpret binary number as unsigned integer, two's complement signed integer, floating point number, ASCII characters, Unicode characters, ...
- Integers have largest positive and largest negative numbers, but represent all in between
 - Two's comp. weirdness is one extra negative number
 - Integer (and floating point operations) can lead to results too big to store within their representations: overflow/underflow