New-School Machine Structures
(It’s a bit more complicated!)

- **Parallel Requests**
 Assigned to computer
 e.g., Search "Katz"

- **Parallel Threads**
 Assigned to core
 e.g., Lookup, Ads

- **Parallel Instructions**
 >1 instruction @ one time
 e.g., 5 pipelined instructions

- **Parallel Data**
 >1 data item @ one time
 e.g., Add of 4 pairs of words

- **Hardware descriptions**
 All gates @ one time

- **Programming Languages**
 "Smart Phone
 Warehouse Scale Computer
 Harness Parallelism & Achieve High Performance
 Logic Gates
 Core
 Instruction Unit(s)
 Functional Unit(s)
 Core
 ...
Agenda

• Review
• Cache Performance
• Administrivia
• Parallel Processing
• Technology Break
• Amdahl’s Law
• SIMD
• And in Conclusion, ...

Agenda

• Review
• Cache Performance
• Administrivia
• Parallel Processing
• Technology Break
• Amdahl’s Law
• SIMD
• And in Conclusion, ...
Review

- Write-through versus write-back caches
- AMAT = Hit time + Miss rate x Miss penalty
- Larger caches reduce Miss rate via Temporal and Spatial Locality, but can increase Hit time
- Multilevel caches help Miss penalty

Caches Invisible to Software

- Load and store instructions just access large memory (32-bit addresses in MIPS); hardware automatically moves data in and out of cache
- Even if programmer writes applications not knowing about caches, we observe temporal and spatial locality in memory accesses
- Performance improves (over no caches) even when programmer unaware of cache’s existence
CPI/Miss Rates/DRAM Access
SpecInt2006 on AMD Barcelona (64KB L1, 512KB L2)

<table>
<thead>
<tr>
<th>Name</th>
<th>CPI</th>
<th>Data Only L1 D cache misses/1000 instr</th>
<th>Data Only L2 D cache misses/1000 instr</th>
<th>Instructions and Data DRAM accesses/1000 instr</th>
</tr>
</thead>
<tbody>
<tr>
<td>perl</td>
<td>0.75</td>
<td>3.5</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>bzip2</td>
<td>0.85</td>
<td>11.0</td>
<td>5.8</td>
<td>2.5</td>
</tr>
<tr>
<td>gcc</td>
<td>1.72</td>
<td>24.3</td>
<td>13.4</td>
<td>14.8</td>
</tr>
<tr>
<td>mcf</td>
<td>10.00</td>
<td>106.8</td>
<td>88.0</td>
<td>88.5</td>
</tr>
<tr>
<td>go</td>
<td>1.09</td>
<td>4.5</td>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>hammer</td>
<td>0.80</td>
<td>4.4</td>
<td>2.5</td>
<td>0.6</td>
</tr>
<tr>
<td>sjeng</td>
<td>0.96</td>
<td>1.9</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>libquantum</td>
<td>1.61</td>
<td>33.0</td>
<td>33.1</td>
<td>47.7</td>
</tr>
<tr>
<td>h264avc</td>
<td>0.80</td>
<td>8.8</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>omnetpp</td>
<td>2.94</td>
<td>30.9</td>
<td>27.7</td>
<td>29.8</td>
</tr>
<tr>
<td>astart</td>
<td>1.79</td>
<td>16.3</td>
<td>9.2</td>
<td>8.2</td>
</tr>
<tr>
<td>xalancbmk</td>
<td>2.70</td>
<td>38.0</td>
<td>15.8</td>
<td>11.4</td>
</tr>
<tr>
<td>Median</td>
<td>1.35</td>
<td>13.6</td>
<td>7.5</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Agenda

- Review
- **Cache Performance**
- Administrivia
- Parallel Processing
- Technology Break
- Amdahl’s Law
- SIMD
- And in Conclusion, ...
Performance Programming: Adjust software accesses to improve miss rate

- Now that understand how caches work, can revise program to improve cache utilization
- “Cache-Aware” performance optimizations
 - But code would still work even if no caches present

Performance of Loops over Arrays

- Array performance often limited by memory speed
- OK to access memory in different order as long as get correct result
- **Goal**: Increase performance by minimizing traffic from cache to memory
 - That is, reduce Miss rate by getting better reuse of data already in cache
Alternate Matrix Layouts in Memory

- A matrix is a 2-D array of elements, but memory addresses are “1-D” (0...MaximumMemoryAddress)
- Conventions for matrix layout
 - by column, or “column major” (Fortran default); A(i,j) at A+i+j*n
 - by row, or “row major” (C default) A[i][j] at A+i*n+j

How a 4x5 Matrix is stored in memory, red numbers are memory addresses

Cache Blocks in Matrix

Column Major
(as used in FORTRAN)

Row Major
(as used in C)

Individual multi-word cache block

One row of 2D matrix

*Cache Line is alternative name for Cache Entry or Block
Loop Interchange: Flashcard quiz

```c
for(j=0; j < N; j++) {
    for(i=0; i < M; i++) {
        x[i][j] = 2 * x[i][j];
    }
}
```

What kind of locality does this improve?

Spatial
Temporal
Both
Neither

Loop Fusion: Flashcard Quiz

```c
for(i=0; i < N; i++)
    a[i] = b[i] * c[i];
```

```c
for(i=0; i < N; i++)
    d[i] = a[i] * c[i];
```

What kind of locality does this improve?

Spatial
Temporal
Both
Neither
Cache Blocking (aka Cache Tiling)

• “shrink” problem by performing multiple iterations within smaller cache blocks

• Also known as cache tiling
• Don’t confuse term “cache blocking” with:
 – cache blocks, i.e., individual cache entries or lines
 – (or later, blocking versus non-blocking caches)

• Use Matrix Multiply as example: Next Lab (and Project 3)
Simplest Algorithm

Assumption: the matrices are stored as 2-D NxN arrays

```
for (i=0;i<N;i++)
    for (j=0;j<N;j++)
        for (k=0;k<N;k++)
            c[i][j] += a[i][k] * b[k][j];
```

Advantage: code simplicity

Disadvantage: Marches through memory and caches

Matrix Multiplication

\[c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \]

Simple Matrix Multiply - www.youtube.com/watch?v=yl0LTcDIhxc
100 x 100 Matrix, Cache 1000 blocks, 1 word/block
Improving reuse via Blocking: 1st “Naïve” Matrix Multiply

{implements \(C = C + A \times B \)}

for \(i = 1 \) to \(n \)
{read row \(i \) of \(A \) into cache}
for \(j = 1 \) to \(n \)
{read \(c(i,j) \) into cache}
{read column \(j \) of \(B \) into cache}
for \(k = 1 \) to \(n \)
\(c(i,j) = c(i,j) + a(i,k) \times b(k,j) \)
{write \(c(i,j) \) back to main memory}

Blocked Matrix Multiply

Consider \(A,B,C \) to be \(N \)-by-\(N \) matrices of \(b \)-by-\(b \) subblocks where \(b=n \) / \(N \) is called the block size

for \(i = 1 \) to \(N \)
for \(j = 1 \) to \(N \)
{read block \(C(i,j) \) into cache}
for \(k = 1 \) to \(N \)
{read block \(A(i,k) \) into cache}
{read block \(B(k,j) \) into cache}
\(C(i,j) = C(i,j) + A(i,k) \times B(k,j) \) {do a matrix multiply on blocks}
{write block \(C(i,j) \) back to main memory}
Blocked Algorithm

- The blocked version of the i-j-k algorithm is written simply as \((A,B,C)\) are submatrices of \(a, b, c\)

\[
\begin{align*}
\text{for } (i=0; i<N/r; i++) & \\
\text{for } (j=0; j<N/r; j++) & \\
\text{for } (k=0; k<N/r; k++) & \\
C[i][j] &= A[i][k] \times B[k][j]
\end{align*}
\]

- \(r\) = block (sub-matrix) size (Assume \(r\) divides \(N\))
- \(X[i][j]\) = a sub-matrix of \(X\), defined by block row \(i\) and block column \(j\)

Another View of Blocked Matrix Multiply

16x16 Matrices, with 4x4 blocks
Maximum Block Size

- The blocking optimization works only if the blocks fit in cache.
- That is, 3 blocks of size $r \times r$ must fit in memory (for A, B, and C)
- $M =$ size of cache (in elements/words)
- We must have: $3r^2 = M$, or $r = \sqrt[3]{M/3}$
- Ratio of cache misses blocked vs. unblocked up to $\approx \sqrt{M}$

1x1 blocks: 1,020,000 misses: read A once, read B 100 times, read C once

Blocked Matrix Multiply Whole Thing: www.youtube.com/watch?v=f3-z6t_xlyw

30x30 blocks: 90,000 misses = read A and B four times, read C once

“Only” 11X vs 30X Matrix small enough that row of A in simple version fits completely in cache (+ few odds and ends)

Sources of Cache Misses (3 C’s)

- **Compulsory** (cold start, first reference):
 - 1st access to a block, “cold” fact of life, not a lot you can do about it.
 - If running billions of instructions, compulsory misses are insignificant
- **Capacity**:
 - Cache cannot contain all blocks accessed by the program
 - Misses that would not occur with infinite cache
- **Conflict** (collision):
 - Multiple memory locations mapped to the same cache location
 - Misses that would not occur with ideal fully associative cache
Flashcard Quiz: With a fixed cache capacity, what effect does a larger block size have on the 3Cs?

- Decreases compulsory, increases conflicts
- Increases conflicts
- Increases compulsory, decreases conflicts
- Decreases conflicts

Flashcard Quiz: With a fixed cache block size, what effect does a larger cache capacity have on the 3Cs?

- Increases compulsory, decreases conflicts
- Increases conflicts, decreases capacity
- Decreases compulsory, decreases conflicts
- Decreases conflicts, decreases capacity
- Decreases conflicts
Agenda

- Review
- Cache Performance
- **Administrivia**
 - Parallel Processing
 - Technology Break
 - Amdahl’s Law
 - SIMD
 - And in Conclusion, ...

Administrivia
Agenda

• Review
• Cache Performance
• Administrivia
• Parallel Processing
• Technology Break
• Amdahl’s Law
• SIMD
• And in Conclusion, ...

Alternative Kinds of Parallelism: The Programming Viewpoint

• Job-level parallelism/process-level parallelism
 — Running independent programs on multiple processors simultaneously
 — *Example*?

• Parallel-processing program
 — Single program that runs on multiple processors simultaneously
 — *Example*?
Alternative Kinds of Parallelism:
Single-Instruction/Single-Data Stream

- Single Instruction, Single Data stream (SISD)
 - Sequential computer that exploits no parallelism in either the instruction or data streams. Examples of SISD architecture are traditional uniprocessor machines.

Alternative Kinds of Parallelism:
Multiple-Instruction/Single-Data Stream

- Multiple-Instruction, Single-Data stream (MISD)
 - Computer that exploits multiple instruction streams against a single data stream for data operations that can be naturally parallelized. For example, certain kinds of array processors.
 - No longer commonly encountered, mainly of historical interest only.
Alternative Kinds of Parallelism: Single-Instruction/Multiple-Data Stream

- Single-Instruction, Multiple-Data streams (SIMD or “sim-dee”)
 - Computer that exploits multiple data streams against a single instruction stream to operations that may be naturally parallelized, e.g., Intel SIMD instruction extensions or NVIDIA Graphics Processing Unit (GPU)

Alternative Kinds of Parallelism: Multiple-Instruction/Multiple-Data Streams

- Multiple-Instruction, Multiple-Data streams (MIMD or “mim-dee”)
 - Multiple autonomous processors simultaneously executing different instructions on different data.
 - MIMD architectures include multicore and Warehouse-Scale Computers
 - *(Discuss after midterm)*
Flynn* Taxonomy, 1966

<table>
<thead>
<tr>
<th>Instruction Streams</th>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>SISD: Intel Pentium 4</td>
<td>SIMD: SSE instructions of x86</td>
</tr>
<tr>
<td>Multiple</td>
<td>MISD: No examples today</td>
<td>MIMD: Intel Xeon e5345 (Clovertown)</td>
</tr>
</tbody>
</table>

- In 2013, SIMD and MIMD most common parallelism in architectures – usually both in same system!
- Most common parallel processing programming style: Single Program Multiple Data (“SPMD”)
 - Single program that runs on all processors of a MIMD
 - Cross-processor execution coordination through conditional expressions (thread parallelism after midterm)
- SIMD (aka hw-level data parallelism): specialized function units, for handling lock-step calculations involving arrays
 - Scientific computing, signal processing, multimedia (audio/video processing)

Two kinds of Data-Level Parallelism (DLP)

- Lots of data in memory that can be operated on in parallel (e.g., adding together 2 arrays)
- Lots of data on many disks that can be operated on in parallel (e.g., searching for documents)

- 2nd lecture (and 1st project) did DLP across 10s of servers and disks using MapReduce
- Today’s lecture (and 3rd project) does Data-Level Parallelism (DLP) in memory

*Prof. Michael Flynn, Stanford
Agenda

- Review
- Cache Performance
- Administrivia
- Parallel Processing
- Technology Break
- Amdahl’s Law
- SIMD
- And in Conclusion, ...

Big Idea: Amdahl’s (Heartbreaking) Law

- Speedup due to enhancement E is
 \[
 \text{Speedup w/ E} = \frac{\text{Exec time w/o E}}{\text{Exec time w/ E}}
 \]

- Suppose that enhancement E accelerates a fraction \(F \) \((F < 1)\) of the task by a factor \(S \) \((S > 1)\) and the remainder of the task is unaffected

\[
\text{Execution Time w/ E} = \text{Execution Time w/o E} \times \left[(1-F) + \frac{F}{S} \right]
\]

\[
\text{Speedup w/ E} = \frac{1}{\left[(1-F) + \frac{F}{S} \right]}
\]
Big Idea: Amdahl’s Law

\[
\text{Speedup } = \frac{1}{(1 - F) + \frac{F}{S}}
\]

Example: the execution time of half of the program can be accelerated by a factor of 2. What is the program speed-up overall?

\[
\frac{1}{0.5 + 0.5} = \frac{1}{0.5 + 0.25} = 1.33
\]
Example #1: Amdahl’s Law

Speedup w/ E =

• Consider an enhancement which runs 20 times faster but which is only usable 25% of the time.
 Speedup w/ E =

• What if its usable only 15% of the time?
 Speedup w/ E =

• Amdahl’s Law tells us that to achieve linear speedup with 100 processors, none of the original computation can be scalar!
• To get a speedup of 90 from 100 processors, the percentage of the original program that could be scalar would have to be 0.1% or less
 Speedup w/ E =

Parallel Speed-up Example

\[Z_0 + Z_1 + ... + Z_{10} \]

\[\begin{align*}
X_{1,1} & & X_{1,10} & & Y_{1,1} & & Y_{1,10} \\
X_{10,1} & & X_{10,10} & & Y_{10,1} & & Y_{10,10} \\
\end{align*} \]

Partition 10 ways and perform on 10 parallel processing units

Non-parallel part Parallel part

• 10 “scalar” operations (non-parallelizable)
• 100 parallelizable operations
• 110 operations
Example #2: Amdahl’s Law

\[\text{Speedup w/ } E = \frac{1}{(1-F) + F/S} \]

- Consider summing 10 scalar variables and two 10 by 10 matrices (matrix sum) on 10 processors
 \[\text{Speedup w/ } E = \]

- What if there are 100 processors?
 \[\text{Speedup w/ } E = \]

- What if the matrices are 100 by 100 (or 10,010 adds in total) on 10 processors?
 \[\text{Speedup w/ } E = \]

- What if there are 100 processors?
 \[\text{Speedup w/ } E = \]
Strong and Weak Scaling

• To get good speedup on a multiprocessor while
 keeping the problem size fixed is harder than getting
 good speedup by increasing the size of the problem.
 – **Strong scaling**: when speedup can be achieved on a
 parallel processor without increasing the size of the
 problem
 – **Weak scaling**: when speedup is achieved on a parallel
 processor by increasing the size of the problem
 proportionally to the increase in the number of processors

• **Load balancing** is another important factor: every
 processor doing same amount of work
 – Just one unit with twice the load of others cuts speedup
 almost in half

Suppose a program spends 80% of its time in a square root
routine. How much must you speedup square root to make
the program run 5 times faster?

\[
\text{Speedup w/ } E = \frac{1}{(1-F) + \frac{F}{S}}
\]

☐ 10
☐ 20
☐ 100
☐ None of the Above
Agenda

- Review
- Cache Performance
- Administrivia
- Parallel Processing
- Technology Break
- Amdahl’s Law
- SIMD
- And in Conclusion, ...

SIMD Architectures

- *Data parallelism*: executing one operation on multiple data streams

- Example to provide context:
 - Multiplying a coefficient vector by a data vector (e.g., in filtering)

 \[y[i] := c[i] \times x[i], \quad 0 \leq i < n \]

- Sources of performance improvement:
 - One instruction is fetched & decoded for entire operation
 - Multiplications are known to be independent
 - Pipelining/concurrency in memory access as well
“Advanced Digital Media Boost”

- To improve performance, Intel’s SIMD instructions
 - Fetch one instruction, do the work of multiple instructions
 - MMX (MultiMedia eXtension, Pentium II processor family)
 - SSE (Streaming SIMD Extension, Pentium III and beyond)

Example: SIMD Array Processing

```plaintext
for each f in array
  f = sqrt(f)

for each f in array
{
  load f to the floating-point register
  calculate the square root
  write the result from the register to memory
}

for each 4 members in array
{
  load 4 members to the SSE register
  calculate 4 square roots in one operation
  store the 4 results from the register to memory
}
```

SIMD style
Data-Level Parallelism and SIMD

- SIMD wants adjacent values in memory that can be operated in parallel
- Usually specified in programs as loops

  ```c
  for(i=1000; i>0; i=i-1)
      x[i] = x[i] + s;
  ```

- How can reveal more data-level parallelism than available in a single iteration of a loop?
- **Unroll loop** and adjust iteration rate

Looping in MIPS

Assumptions:
- $t1$ is initially the address of the element in the array with the highest address
- $f0$ contains the scalar value s
- 8($t2$) is the address of the last element to operate on

CODE:

```mips
Loop:1. l.d $f2,0($t1) ; $f2=array element
2. add.d $f10,$f2,$f0 ; add s to $f2
3. s.d $f10,0($t1) ; store result
4. addui $t1,$t1,#-8 ; decrement pointer 8 byte
5. bne $t1,$t2,Loop ; repeat loop if $t1 != $t2
```
Loop Unrolled

Loop:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Register</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>l.d</td>
<td>$f2</td>
<td>0($t1)</td>
</tr>
<tr>
<td>add.d</td>
<td>$f10</td>
<td>$f2,$f0</td>
</tr>
<tr>
<td>s.d</td>
<td>$f10</td>
<td>0($t1)</td>
</tr>
<tr>
<td>l.d</td>
<td>$f4</td>
<td>-8($t1)</td>
</tr>
<tr>
<td>add.d</td>
<td>$f12</td>
<td>$f4,$f0</td>
</tr>
<tr>
<td>s.d</td>
<td>$f12</td>
<td>-8($t1)</td>
</tr>
<tr>
<td>l.d</td>
<td>$f6</td>
<td>-16($t1)</td>
</tr>
<tr>
<td>add.d</td>
<td>$f14</td>
<td>$f6,$f0</td>
</tr>
<tr>
<td>s.d</td>
<td>$f14</td>
<td>-16($t1)</td>
</tr>
<tr>
<td>l.d</td>
<td>$f8</td>
<td>-24($t1)</td>
</tr>
<tr>
<td>add.d</td>
<td>$f16</td>
<td>$f8,$f0</td>
</tr>
<tr>
<td>s.d</td>
<td>$f16</td>
<td>-24($t1)</td>
</tr>
<tr>
<td>addui</td>
<td>$t1</td>
<td>$t1,#-32</td>
</tr>
<tr>
<td>bne</td>
<td>$t1,$t2</td>
<td>Loop</td>
</tr>
</tbody>
</table>

NOTE:
1. Only 1 Loop Overhead every 4 iterations
2. This unrolling works if loop_limit(mod 4) = 0
3. (Different Registers eliminate stalls in pipeline; we'll see later in course)

Loop Unrolled Scheduled

Loop:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Register</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>l.d</td>
<td>$f2</td>
<td>0($t1)</td>
</tr>
<tr>
<td>l.d</td>
<td>$f4</td>
<td>-8($t1)</td>
</tr>
<tr>
<td>l.d</td>
<td>$f6</td>
<td>-16($t1)</td>
</tr>
<tr>
<td>l.d</td>
<td>$f8</td>
<td>-24($t1)</td>
</tr>
<tr>
<td>add.d</td>
<td>$f10</td>
<td>$f2,$f0</td>
</tr>
<tr>
<td>add.d</td>
<td>$f12</td>
<td>$f4,$f0</td>
</tr>
<tr>
<td>add.d</td>
<td>$f14</td>
<td>$f6,$f0</td>
</tr>
<tr>
<td>add.d</td>
<td>$f16</td>
<td>$f8,$f0</td>
</tr>
<tr>
<td>s.d</td>
<td>$f10</td>
<td>0($t1)</td>
</tr>
<tr>
<td>s.d</td>
<td>$f12</td>
<td>-8($t1)</td>
</tr>
<tr>
<td>s.d</td>
<td>$f14</td>
<td>-16($t1)</td>
</tr>
<tr>
<td>s.d</td>
<td>$f16</td>
<td>-24($t1)</td>
</tr>
<tr>
<td>addui</td>
<td>$t1</td>
<td>$t1,#-32</td>
</tr>
<tr>
<td>bne</td>
<td>$t1,$t2</td>
<td>Loop</td>
</tr>
</tbody>
</table>

4 Loads side-by-side: Could replace with 4-wide SIMD Load
4 Adds side-by-side: Could replace with 4-wide SIMD Add
4 Stores side-by-side: Could replace with 4-wide SIMD Store
Loop Unrolling in C

- Instead of compiler doing loop unrolling, could do it yourself in C

  ```c
  for(i=1000; i>0; i=i-1)
  x[i] = x[i] + s;
  ```

- Could be rewritten
  ```c
  for(i=1000; i>0; i=i-4) {
  x[i] = x[i] + s;
  x[i-1] = x[i-1] + s;
  x[i-2] = x[i-2] + s;
  x[i-3] = x[i-3] + s;
  }
  ```

What is downside of doing it in C?

Generalizing Loop Unrolling

- A loop of **n iterations**
- **k copies** of the body of the loop
- **Assuming (n mod k) ≠ 0**

Then we will run the loop with 1 copy of the body **(n mod k)** times and with **k copies** of the body **floor(n/k)** times

- (Will revisit loop unrolling again when get to pipelining later in semester)
And in Conclusion, ...

• Although caches are software-invisible, a “cache-aware” performance programmer can improve performance by large factors by changing order of memory accesses
• Flynn Taxonomy of Parallel Architectures
 – *SIMD*: *Single Instruction Multiple Data*
 – *MIMD*: *Multiple Instruction Multiple Data*
 – SISD: Single Instruction Single Data (sequential machines)
 – MISD: Multiple Instruction Single Data (unused)
• Amdahl’s Law
 – Strong versus weak scaling
• SIMD Extensions
 – Exploit data-level parallelism in loops