
CS61c Summer 2015 Discussion 3 – MIPSII/Instruction Formats

1 Translating between C and MIPS

Translate between the C and MIPS code. You may want to use the MIPS Green Sheet as a reference. In all of
the C examples, we show you how the different variables map to registers – you don’t have to worry about the
stack or any memory-related issues.

C MIPS

// Strcpy:

// $s1 -> char s1[]

// $s2 -> char *s2 =

// malloc(sizeof(char)*7);

int i = 0;

do {

s2[i] = s1[i];

i++;

} while(s1[i] != ’\0’);

s2[i] = ’\0’;

addiu $t0, $0, 0

Loop: addu $t1, $s1, $t0 # s1[i]

addu $t2, $s2, $t0 # s2[i]

lb $t3, 0($t1) # char is

sb $t3, 0($t2) # 1 byte!

addiu $t0, $t0, 1

addiu $t1, $t1, 1 # unnecessary line

lb $t4, 0($t1) # could use offset

bne $t4, $0, Loop

Done: sb $t4, 1($t2)

// Nth_Fibonacci(n):

// $s0 -> n, $s1 -> fib

// $t0 -> i, $t1 -> j

// Assume fib, i, j are these values

int fib = 1, i = 1, j = 1;

if (n==0) return 0;

else if (n==1) return 1;

n -= 2;

while (n != 0) {

fib = i + j;

j = i;

i = fib;n--;

}

return fib;

...

beq $s0, $0, Ret0

addiu $t2, $0, 1

beq $s0, $t2, Ret1

addiu $s0, $s0, -2

Loop: beq $s0, $0, RetF

addu $s1, $t0, $t1

addiu $t0, $t1, 0

addiu $t1, $s1, 0

addiu $s0, $s0, -1

j Loop

Ret0: addiu $v0, $0, 0

j Done

Ret1: addiu $v0, $0, 1

j Done

RetF: addu $v0, $0, $s1

Done: ...

// Collatz conjecture

// $s0 -> n

unsigned n;

L1: if (n % 2) goto L2;

goto L3;

L2: if (n == 1) goto L4;

n = 3 * n + 1;

goto L1;

L3: n = n >> 1;

goto L1;

L4: return n;

L1: addiu $t0, $0, 2

div $s0, $t0 # puts (n%2) in $hi

mfhi $t0 # sets $t0 = (n%2)

bne $t0, $0, L2

j L3

L2: addiu $t0, $0, 1

beq $s0, $t0, L4

addiu $t0, $0, 3

mul $s0, $s0, $t0

addiu $s0, $s0, 1

j L1

L3: srl $s0, $s0, 1

j L1

L4: ...

1

2 MIPS Addressing Modes

• We have several addressing modes to access memory (immediate not listed):

(a) Base displacement addressing: Adds an immediate to a register value to create a memory address
(used for lw, lb, sw, sb)

(b) PC-relative addressing: Uses the PC (actually the current PC plus four) and adds the I-value of
the instruction (multiplied by 4) to create an address (used by I-format branching instructions like
beq, bne)

(c) Pseudodirect addressing: Uses the upper four bits of the PC and concatenates a 26-bit value from
the instruction (with implicit 00 lowest bits) to make a 32-bit address (used by J-formatinstructions)

(d) Register Addressing: Uses the value in a register as a memory address (jr)

(1) You need to jump to an instruction that 228 + 4 bytes higher than the current PC. How do you do it?
Assume you know the exact destination address at compile time. (Hint: you need multiple instructions)

The jump instruction can only reach addresses that share the same upper 4 bits as the PC. A jump 228 + 4
bytes away would require changing the fourth highest bit, so a jump instruction is not sufficient. We must
manually load our 32 bit address into a register and use jr.

lui $at {upper 16 bits of Foo}

ori $at $at {lower 16 bits of Foo}

jr $at

(2) You now need to branch to an instruction 217 + 4 bytes higher than the current PC, when $t0 equals 0.
Assume that were not jumping to a new 228 byte block. Write MIPS to do this.

The largest address a branch instruction can reach is PC + 4 + SignExtImm. The immediate field is 16
bits and signed, so the largest value is 215 − 1 words, or 217 − 4 Bytes. Thus, we cannot use a branch
instruction to reach our goal, but by the problems assumption, we can use a jump. Assuming were jumping
to label Foo

beq $t0 $0 DontJump

j Foo

DontJump: ...

(3) Given the following MIPS code (and instruction addresses), fill in the blank fields for the following instruc-
tions (youll need your green sheet!):

0x002cff00: loop: addu $t0, $t0, $t0 | 0 | 8 | 8 | 8 | 0 | 0x21 |

0x002cff04: jal foo | 3 | 0xc0001 |

0x002cff08: bne $t0, $zero, loop | 5 | 8 | 0 | -3 = 0xfffd |

...

0x00300004: foo: jr $ra $ra=__0x002cff08___

(4) What instruction is 0x00008A03?

Hex -> bin: 0000 0000 0000 0000 1000 1010 0000 0011

0 opcode -> R-type: 000000 00000 00000 10001 01000 000011

sra $s1 $0 8

2

