
CS61C Fall 2015 Discussion 4 – MIPS Procedures & CALL

1 MIPS Control Flow

There are only two instructions necessary for creating and calling functions: jal and jr. If you follow register
conventions when calling functions, you will be able to write much simpler and cleaner MIPS code.

2 Conventions

1. How should $sp be used? When do we add or subtract from $sp?

2. Which registers need to be saved or restored before using jr to return from a function?

3. Which registers need to be saved before using jal?

4. How do we pass arguments into functions?

5. What do we do if there are more than four arguments to a function?

6. How are values returned by functions?

When calling a function in MIPS, who needs to save the following registers to the stack? Answer “caller” for the
procedure making a function call, “callee” for the function being called, or “N/A” for neither.

$0 $v* $a* $t* $s* $sp $ra

Now assume a function foo (which may be called from a main fucntion) calls another function bar, which is known to
call some other functions. foo takes one argument and will modify and use $t0 and $s0. bar takes two arguments,
returns an integer, and uses $t0-$t2 and $s0-$s1. In the boxes below, draw a possible ordering of the stack just
before bar calls a function. The top left box is the address of $sp when foo is first called, and the stack goes
downwards, continuing at each next column. Add ‘(f)’ if the register is stored by foo and ‘(b)’ if the register is
stored by bar. The first one is written in for you.

1 $ra (f) 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1

3 A Guide to Writing Functions

FunctionFoo: # PROLOGUE

begin by reserving space on the stack

addiu $sp, $sp, -FrameSize

now, store needed registers

sw $ra, 0($sp)

sw $s0, 4($sp)

...

BODY

...

EPILOGUE

restore registers

lw $s0 4($sp)

lw $ra 0($sp)

release stack spaces

addiu $sp, $sp, FrameSize

return to normal execution

jr $ra

4 C to MIPS

1. Assuming $a0 and $a1 hold integer pointers, swap the values they point to via the stack and return control.

void swap(int *a, int *b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

2. Translate the following algorithm that finds the sum of the numbers from 0 to N to MIPS assembly. Assume
$s0 holds N, $s1 holds sum, and that N is greater than or equal to 0.

int sum = 0;

if (N==0) return 0;

while (N != 0) {

sum += N;

N--;

}

return sum;

3. What must be done to make the adding algorithm from the previous part into a callable MIPS function?

2

5 Compile, Assemble, Link, Load, and Go!

5.1 Overview

5.2 Exercises

1. What is the Stored Program concept and what does it enable us to do?

2. How many passes through the code does the Assembler have to make? Why?

3. What are the different parts of the object files output by the Assembler?

4. Which step in CALL resolves relative addressing? Absolute addressing?

5. What step in CALL may make use of the $at register?

6. What does RISC stand for? How is this related to pseudoinstructions?

3

