State

1. Fill out the timing diagram for the circuit below:

2. Fill out the timing diagram for the circuit below:

Logic Gates

1. Label the following logic gates:

Solution: not, and, or, xor, nand, nor, xnor
2. Convert the following to boolean expressions:
(a) NAND

Solution: $\bar{A} \bar{B}+\bar{A} B+A \bar{B}$
(b) XOR

Solution: $\bar{A} B+A \bar{B}$
(c) XNOR

Solution: $\bar{A} \bar{B}+A B$
3. Create an AND gate using only NAND gates.
Solution: $\mathrm{B}-\square$-Output
4. How many different two-input logic gates can there be? How many n-input logic gates?

Solution: A truth table with n inputs has 2^{n} rows. Each logic gate has a 0 or a 1 at each of these rows. Imagining a function as a 2^{n}-bit number, we count $2^{2^{n}}$ total functions, or 16 in the case of n $=2$.

Boolean Logic

$1+A=1$
$A+\bar{A}=1$
$(A+B)(A+C)=A+B C$
$0 B=0$ $B \bar{B}=0 \quad A+\bar{A} B=A+B$
DeMorgan's Law: $\quad \overline{A B}=\bar{A}+\bar{B} \quad \overline{A+B}=\bar{A} \bar{B}$

1. Minimize the following boolean expressions:
(a) Standard: $(A+B)(A+\bar{B}) C$

Solution:

$$
\begin{equation*}
(A A+A \bar{B}+A B+B \bar{B}) C=(A+A(\bar{B}+B)) C=A C \tag{1}
\end{equation*}
$$

(b) Grouping \& Extra Terms: $\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+A B \bar{C}+A \bar{B} \bar{C}+A B C+A \bar{B} C$

Solution:

$$
\begin{align*}
\bar{A} \bar{C}(\bar{B}+B)+A \bar{C}(B+\bar{B})+A C(B+\bar{B}) & =\bar{A} \bar{C}+A \bar{C}+A C \tag{2}\\
& =\bar{A} \bar{C}+A \bar{C}+A \bar{C}+A C \tag{3}\\
& =(\bar{A}+A) \bar{C}+A(\bar{C}+C) \tag{4}\\
& =A+\bar{C} \tag{5}
\end{align*}
$$

(c) DeMorgan's: $\overline{A(\bar{B} \bar{C}+B C)}$

Solution:

$$
\begin{align*}
\overline{A(\bar{B} \bar{C}+B C)} & =\bar{A}+\overline{\bar{B}} \bar{C}+B C \tag{6}\\
& =\bar{A}+\overline{\bar{B} \bar{C}} \overline{B C} \tag{7}\\
& =\bar{A}+(B+C)(\bar{B}+\bar{C}) \tag{8}\\
& =\bar{A}+B \bar{C}+\bar{B} C \tag{9}
\end{align*}
$$

