
CS61C Fall 2015 Discussion 6 – Single Cycle CPU Datapath and Control
__
Single Cycle CPU Design
Here we have a single cycle CPU diagram. Answer the following questions:
1. Name each component.
2. Name each datapath stage and explain its functionality.

Stage Functionality
Instruction

Fetch
Send an address to the instruction memory
Read the instruction (MEM[PC])

Decode /
Register Read

Generate the control signal values using the opcode & funct fields
Read the register values with the rs & rt fields
Sign / zero extend the immediate

Execute Perform arithmetic / logical operations

Memory Read from / write to the data memory

Register Write Write back the ALU result / the memory load to the register file

3. Provide data inputs and control signals to the next PC logic.
4. Implement the next PC logic.

Single Cycle CPU Control Logic

P
C

Instruction
Memory

Register
File

A
L
U

Addr Read
Data

Control Unit

Write
Addr

Read
Addr2

Read
Data1

Read
Addr1

Read
Data2

A

B

Out

Sign / Zero
Extended

0

1

0

1

1

0

Data
Memory

Write
Data Write

Enable

+4

0

1

Write
Enable

Inst[25:21]

Inst[20:16]

Inst
[15:11]

Inst[15:0]

Inst[31:26]
Inst[5:0]

Jump

RegDst ExtOp RegWr ALUSrc

RF[rs]

RF[rt]

ALUCtr MemWr
MemToReg

Instruction Fetch Decode / Register Read Execute Memory Regiseter Write

Branch

<<2+

<<2 Inst[25:0]

1

0
Concat

(PC+4)[31:28]

Branch Addr

Zero

PC+4

Jump Addr

Addr

Read
Data

Write
Data

Next PC Logic

Register Write

Note: The Zero signal in the ALU is just one way to do this.
The reasoning for using a “Zero” here is that based on the following instructions (on the next page) that we need to account for, we only want to branch if two values are equal. We can easily do this by subtracting the two and outputting a 1 if the result is equivalent to 0 (hence the “Zero” signal)

CS61C Fall 2015 Discussion 6 – Single Cycle CPU Datapath and Control
__
Fill out the values for the control signals from the previous CPU diagram.

Instrs. Control Signals
Jump Branch RegDst ExtOp ALUSrc ALUCtr MemWr MemtoReg RegWr

add 0 0 1 X 0 0010 0 0 1
ori 0 0 0 0 1 0001 0 0 1
lw 0 0 0 1 1 0010 0 1 1
sw 0 0 X 1 1 0010 1 X 0
beq 0 1 X 1 0 0110 0 X 0
j 1 X X X X XXXX 0 X 0

X: don’t care value(either 0 or 1 is ok)
This table shows the ALUCtr values for each operation of the ALU:
Operation AND OR ADD SUB SLT NOR
ALUCtr 0000 0001 0010 0110 0111 1100

Clocking Methodology

• The input signal to each state element must stabilize before each rising edge.
• Critical path: Longest delay path between state elements in the circuit.
• tclk ≥ tclk-to-q + tCL + tsetup, where tCL is the critical path in the combinational logic.
• If we place registers in the critical path, we can shorten the period by reducing

the amount of logic between registers.

Single Cycle CPU Performance Analysis
The delays of circuit elements are given as follows:

Element Register
clk-to-q

Register
Setup MUX ALU Mem

Read
Mem
Write

RegFile
Read

RegFile
Setup

Parameter tclk-to-q tsetup tmux tALU tMEMread tMEMwrite tRFread TRFsetup

Delay(ps) 30 20 25 200 250 200 150 20
1. Give an instruction that exercises the critical path.
Load Word (lw)
2. What is the critical path in the single cycle CPU?
Red dashed line in the diagram
3. What are the minimum clock cycle, tclk, and the maximum clock frequency, fclk?
Assume the tclk-to-q > hold time.
tclk >= tPC, clk-to-q + tIMEMread + tRFread + tALU + tDMEMread + tmux + tRFsetup
 = 30 + 250 + 150 + 200 + 250 + 25 + 20 = 925 ps
fclk = 1/tclk <= 1/ (925 ps) = 1.08 GHz
4. Why is a single cycle CPU inefficient?
 -Not all instructions exercise the critical path.
 -It is not parallelized. Each component can be active concurrently.
5. How can you improve its performance? What is the purpose of pipelining?
Pipelining: Put pipeline registers between two datapath stages. ! reduce the clock time

