Warehouse Scale Computing

1. **Amdahl’s Law**
 1) You are going to train the image classifier with 50,000 images on a WSC having more than 50,000 servers. You notice that 99% of the execution can be parallelized. What is the speedup?

 \[\frac{1}{0.01 + \frac{0.99}{50,000}} \approx \frac{1}{0.01} = 100 \]

2. **Failure in a WSC**
 1) In this example, a WSC has 55,000 servers, and each server has four disks whose annual failure rate is 4%. How many disks will fail per hour?

 \[\frac{(55,000 \times 4 \times 0.04)}{(365 \times 24)} = 1.00 \rightarrow \text{MTTF} = 1 \text{ hour} \]

 2) What is the availability of the system if it does not tolerate the failure? Assume that the time to repair a disk is 30 minutes.

 MTTF = 1, MTTR = 0.5 \rightarrow \text{Availability} = \frac{1}{1 + 0.5} = \frac{2}{3} = 66.6\%

3. **Power Usage Effectiveness (PUE)**

 Sources speculate Google has over 1 million servers. Assume each of the 1 million servers draw an average of 200W, the PUE is 1.5, and that Google pays an average of 6 cents per kilowatt-hour for datacenter electricity.

 1) Estimate Google’s annual power bill for its datacenters.

 \[1.5 \times 1,000,000 \text{ servers} \times 0.2\text{kW/server} \times $0.06/\text{kW-hr} \times 8760 \text{ hrs/yr} = $157.68 \text{ M/yr} \]

 2) Google reduced the PUE of a 50,000 machine datacenter from 1.5 to 1.25 without decreasing the power supplied to the servers. What’s the cost savings per year?

 \[(1.5 - 1.25) \times 50,000 \text{ servers} \times 0.2\text{kW/server} \times $0.06/\text{kW-hr} \times 8760 \text{ hrs/yr} = $1.314\text{M/yr} \]

Map Reduce

Use pseudocode to write MapReduce functions necessary to solve the problems below. Also, make sure to fill out the correct data types. Some tips:

- The input to each MapReduce job is given by the signature of the `map()` function.
- The function `emit(key k, value v)` outputs the key-value pair `(k, v)`.
- The `for(var in list)` syntax can be used to iterate through `Iterables` or you can call the `hasNext()` and `next()` functions.
- Usable data types: `int`, `float`, `String`. You may also use lists and custom data types composed of the aforementioned types.
- The method `intersection(list1, list2)` returns a list that is the intersection of list1 and list2.

1. Given the student’s name and the course taken, output each student’s name and total GPA.
2. Given a person’s unique int ID and a list of the IDs of their friends, compute the list of mutual friends between each pair of friends in a social network.

<table>
<thead>
<tr>
<th>Declare any custom data types here:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CourseData:</td>
</tr>
<tr>
<td>int courseID</td>
</tr>
<tr>
<td>float studentGrade // a number from 0-4</td>
</tr>
</tbody>
</table>

map(String student, CourseData value):
emit(student, value.studentGrade)

reduce(String key, Iterable< float > values):
totalPts = 0
totalClasses = 0
for (grade in values):
totalPts += grade
 totalClasses++
emit(key, totalPts / totalClasses)

3. a) Given a set of coins and each coin’s owner, compute the number of coins of each denomination that a person has.

<table>
<thead>
<tr>
<th>Declare any custom data types here:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FriendPair:</td>
</tr>
<tr>
<td>int friendOne</td>
</tr>
<tr>
<td>int friendTwo</td>
</tr>
</tbody>
</table>

map(int personID, list<int> friendIDs):
for (fID in friendIDs):
 if (personID < fID):
 friendPair = (personID, fID)
 else:
 friendPair = (fID, personID)
emit(friendPair, friendIDs)

reduce(FriendPair key, Iterable< list<int> > values):
mutualFriends =
 intersection(
 values.next(), values.next())
emit(key, mutualFriends)
Declare any custom data types here:
CoinPair:
 String person
 String coinType

\[
\text{map(String person, String coinType):}
\]
\[
\text{key} = (\text{person, coinType})
\]
\[
\text{emit(key, 1)}
\]

\[
\text{reduce(CoinPair key,}
\]
\[
\text{Iterable< int > values):}
\]
\[
\text{total} = 0
\]
\[
\text{for (count in values):}
\]
\[
\text{total} += \text{count}
\]
\[
\text{emit(key, total)}
\]

b) Using the output of the first MapReduce, compute the amount of money each person has. The function \(\text{valueOfCoin(String coinType)}\) returns a float corresponding to the dollar value of the coin.

\[
\text{map(CoinPair key, int amount):}
\]
\[
\text{emit(coinPair.person,}
\]
\[
\text{valueOfCoin(coinPair.coinType)*amount)}
\]

\[
\text{reduce(String key,}
\]
\[
\text{Iterable< float > values):}
\]
\[
\text{total} = 0
\]
\[
\text{for (amount in values):}
\]
\[
\text{total} += \text{amount}
\]
\[
\text{emit(key, total)}
\]

Spark
• RDD: primary abstraction of a distributed collection of items
• Transforms: RDD → RDD

<table>
<thead>
<tr>
<th>(\text{map(func)})</th>
<th>Return a new distributed dataset formed by passing each element of the source through a function (func).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{flatMap(func)})</td>
<td>Similar to map, but each input item can be mapped to 0 or more output items (so (func) should return a Seq rather than a single item).</td>
</tr>
<tr>
<td>(\text{reduceByKey(func)})</td>
<td>When called on a dataset of ((K,V)) pairs, returns a dataset of ((K,V)) pairs where the values for each key are aggregated using the given reduce function (func), which must be of type ((V,V)\Rightarrow V).</td>
</tr>
</tbody>
</table>
• Actions: RDD → Value

| reduce(func) | Aggregate the elements of the dataset regardless of keys using a function func |

1. Implement Problem 1 of MapReduce with Spark

```python
# students: list((studentName, courseData))
studentsData = sc.parallelize(students)
out = studentsData.map(lambda k, v: (k, (v.studentGrade, 1))
    .reduceByKey(lambda v1, v2: (v1[0] + v2[0], v1[1] + v2[1]))
    .map(lambda k, v: (k, v[0] / v[1]))
```

2. Implement Problem 2 of MapReduce with Spark

```python
def genFriendPairAndValue(pID, fIDs):
    return [((pID, fID), fIDs) if pID < fID else (fID, pID) for fID in fIDs]
def intersection(l1, l2):
    return [x for x in l1 if x in l2]
# persons: list((personID, list(friendID))
personsData = sc.parallelize(persons)
out = personsData.flatMap(lambda k, v: genFriendPairAndValue(k, v))
    .reduceByKey(lambda v1, v2: intersection(v1, v2))
```

3. Implement Problem 3 of MapReduce with Spark

```python
# coinPairs: list((person, coinType))
coinData = sc.parallelize(coinPairs)
#(3.a) out: list(((person, coinType), count))
out1 = coinData.map(lambda k1, k2: ((k1, k2), 1))
    .reduceByKey(lambda v1, v2: v1 + v2)
#(3.b)
out2 = out1.map(lambda k, v: (k[0], v * valueOfCoin(k[1])))
    .reduceByKey(lambda v1, v2: v1 + v2)
```