
10/10/17

1

CS	61C:	
Great	Ideas	in	Computer	Architecture

Lecture	13:	Pipelining

Krste	Asanović &	Randy	Katz

http://inst.eecs.berkeley.edu/~cs61c/fa17

Agenda
• RISC-V Pipeline
• Pipeline	Control
• Hazards

− Structural
− Data

§ R-type	instructions
§ Load

− Control
• Superscalar	processors
CS	61c Lecture	13:	Pipelining 2

Recap:	Pipelining	with	RISC-V

CS	61c 3

add	t0,	t1,	t2

or	t3,	t4,	t5

sll t6,	t0,	t3
tcycle

instruction	sequence

tinstruction

Single Cycle Pipelining

Timing tstep =	100	…	200	ps tcycle =	200	ps

Register access	only	100	ps All	cycles	same	length

Instruction time,	tinstruction =	tcycle =	800	ps 1000	ps

Clock	rate,	fs 1/800	ps =	1.25	GHz 1/200 ps =	5	GHz

Relative	speed 1	x 4	x

RISC-V	Pipeline
add	t0,	t1,	t2

or	t3,	t4,	t5

slt t6,	t0,	t3

tcycle
=	200	ps

instruction	sequence

tinstruction =	1000	ps

sw t0,	4(t3)

lw t0,	8(t3)

addi t2,	t2,	1

Resource	use	of	
instruction	over	time

Resource	use	in	a	
particular	time	slot

CS	61c Lecture	13:	Pipelining 4

Single-Cycle	RISC-V	RV32I	Datapath

CS	61c 5

IMEM
ALU

Imm.
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

pc+4
alu

mem

wb
alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUnBrEq BrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

Pipelining	RISC-V	RV32I	Datapath

CS	61c 6

IMEM
ALU

Imm.
Gen

+4

DMEM
Branch	
Comp.

Reg[]

AddrA
AddrB

DataA

AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

pc+4
alu

mem

wb
alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

wb

Instruction	Fetch
(F)

Instruction	
Decode/Register	Read

(D)

ALU	Execute
(X)

Memory	Access
(M)

Write	Back
(W)



10/10/17

2

Pipelined	RISC-V	RV32I	Datapath

CS	61c
7

IMEM

ALU

+4

DMEM
Branch	
Comp.

Reg[]

AddrA

AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

aluX

pcF+4

+4pcDpcF
pcX pcM

instD

instX

rs1X

rs2X

aluM

rs2MimmXImm.

Recalculate	PC+4	in	M	stage	to	avoid	
sending	both	PC	and	PC+4	down	pipeline

instM instW

Must	pipeline	instruction	along	with	data,	so	
control	operates	correctly	in	each	stage

Each	stage	operates	on	different	instruction

CS	61c
8

IMEM

ALU

+4

DMEM
Branch	
Comp.

Reg[]

AddrA

AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

aluX

pcF+4

+4pcDpcF
pcX pcM

instD

instX

rs1X

rs2X

aluM

rs2MimmXImm.
instM instW

add	t0,	
t1,	t2

or	t3,	t4,	t5slt t6,	t0,	t3sw t0,	4(t3)lw t0,	8(t3)

Pipeline	registers	separate	stages,	hold	data	for	each	instruction	in	flight

Agenda
• RISC-V Pipeline
• Pipeline	Control
• Hazards

− Structural
− Data

§ R-type	instructions
§ Load

− Control
• Superscalar	processors
CS	61c Lecture	13:	Pipelining 9

Pipelined	Control
• Control	signals	derived	from	instruction

− As	in	single-cycle	implementation
− Information	is	stored	in	pipeline	registers	for	use	by	later	stages

CS	61c 10

Hazards	Ahead

CS	61c Lecture	13:	Pipelining 11

Agenda
• RISC-V Pipeline
• Pipeline	Control
• Hazards

− Structural
− Data

§ R-type	instructions
§ Load

− Control
• Superscalar	processors
CS	61c Lecture	13:	Pipelining 12



10/10/17

3

Structural	Hazard
• Problem:		Two	or	more	instructions	in	the	pipeline	
compete	for	access	to	a	single	physical	resource
• Solution	1:	Instructions	take	it	in	turns	to	use	resource,	
some	instructions	have	to	stall
• Solution	2:	Add	more	hardware	to	machine
• Can	always	solve	a	structural	hazard	by	adding	more	
hardware

CS	61c Lecture	13:	Pipelining 13

Regfile Structural	Hazards
• Each	instruction:

− can	read	up	to	two	operands	in	decode	stage
− can	write	one	value	in	writeback stage

• Avoid	structural	hazard	by	having	separate	“ports”
− two	independent	read	ports	and	one	independent	write	port

• Three	accesses	per	cycle	can	happen	simultaneously

CS	61c Lecture	13:	Pipelining 14

Structural	Hazard:	Memory	Access

add	t0,	t1,	t2

or	t3,	t4,	t5

slt t6,	t0,	t3

instruction	sequence

sw t0,	4(t3)

lw t0,	8(t3)

• Instruction	and	data	
memory	used	
simultaneously

ü Use	two	separate	
memories

CS	61c Lecture	13:	Pipelining 15

Instruction	and	Data	Caches

16CS	61c Lecture	13:	Pipelining

Processor

Control

Datapath
PC

Registers
Arithmetic	&	Logic	Unit

(ALU)

Memory	(DRAM)

Bytes

Program

Data

Instruction	
Cache

Data
Cache

Caches:	small	and	fast	“buffer”	memories

Lecture	13:	Pipelining

Structural	Hazards	– Summary
• Conflict	for	use	of	a	resource
• In	RISC-V	pipeline	with	a	single	memory

− Load/store	requires	data	access
− Without	separate	memories,	instruction	fetch	would	have	to	stall
for	that	cycle
§ All	other	operations	in	pipeline	would	have	to	wait

• Pipelined	datapaths require	separate	instruction/data	
memories
− Or	separate	instruction/data	caches

• RISC	ISAs	(including	RISC-V)	designed	to	avoid	structural	
hazards
− e.g.	at	most	one	memory	access/instruction

17

Agenda
• RISC-V Pipeline
• Pipeline	Control
• Hazards

− Structural
− Data

§ R-type	instructions
§ Load

− Control
• Superscalar	processors
CS	61c Lecture	13:	Pipelining 18



10/10/17

4

Data	Hazard:	Register	Access

add	t0,	t1,	t2

or	t3,	t4,	t5

slt t6,	t0,	t3

instruction	sequence

sw t0,	4(t3)

lw t0,	8(t3)

• Separate	ports,	but	what	if	write	to	same	value	as	read?
• Does	sw in	the	example	fetch	the	old	or	new	value?

CS	61c Lecture	13:	Pipelining 19

Register	Access	Policy

add	t0,	t1,	t2

or	t3,	t4,	t5

slt t6,	t0,	t3

instruction	sequence sw t0,	4(t3)

lw t0,	8(t3)

• Exploit	high	speed	of	register	
file	(100	ps)

1) WB	updates	value
2) ID	reads	new	value

• Indicated	in	diagram	by	
shading

CS	61c Lecture	13:	Pipelining 20

Might	not	always	be	possible	to	write	then	read	in	same	cycle,	especially	in	
high-frequency	designs.	Check	assumptions	in	any	question.

Data	Hazard:	ALU	Result

add	s0,	t0,	t1

sub	t2,	s0,	t0

or	t6,	s0,	t3

instruction	sequence

xor t5,	t1,	s0

sw s0,	8(t3)

5 5 5 5 5/9 9 9 9 9Value	of	s0

Without	some	fix,	sub and	or will	calculate	wrong	result!
CS	61c Lecture	13:	Pipelining 21

Data	Hazard:	ALU	Result

add	s0,	t1,	t2

sub	t2,	s0,	t5

or	t6,	s0,	t3

instruction	sequence

xor t5,	t1,	s0

sw s0,	8(t3)

5Value	of	s0

Without	some	fix,	sub and	or will	calculate	wrong	result!
CS	61c Lecture	13:	Pipelining 22

Solution	1: Stalling
• Problem:	Instruction	depends	on	result	from	previous	instruction

− add s0,	t0,	t1
sub t2,	s0,	t3

• Bubble:	
− effectively	NOP:	affected	pipeline	stages	do	“nothing”

Stalls	and	Performance

• Stalls	reduce	performance
− But	stalls	are	required	to	get	correct	results

• Compiler	can	arrange	code	to	avoid	hazards	and	stalls
− Requires	knowledge	of	the	pipeline	structure

CS	61c 24



10/10/17

5

Solution	2:	Forwarding

add	t0,	t1,	t2

or	t3,	t0,	t5

sub	t6,	t0,	t3

instruction	sequence

xor t5,	t1,	t0

sw t0,	8(t3)

5 5 5 5 5/9 9 9 9 9Value	of	t0

Forwarding:	grab	operand	from	pipeline	stage,	
rather	than	register	fileCS	61c 25

Forwarding	(aka	Bypassing)
• Use	result	when	it	is	computed

− Don’t	wait	for	it	to	be	stored	in	a	register
− Requires	extra	connections	in	the	datapath

CS	61c 26Lecture	13:	Pipelining

1)	Detect	Need	for	Forwarding	
(example)

add	t0,	t1,	t2

or	t3,	t0,	t5

sub	t6,	t0,	t3

X M WD

instX.rd

instD.rs1

CS	61c 27

Compare	destination	of	
older	instructions	in	
pipeline	with	sources	of	
new	instruction	in	decode	
stage.
Must	ignore	writes	to	x0!

Forwarding	Path

CS	61c
28

IMEM

ALU

+4

DMEM
Branch	
Comp.

Reg[]

AddrA

AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

aluX

pcF+4

+4pcDpcF
pcX pcM

instD

instX

rs1X

rs2X

aluM

rs2MimmXImm.
instM instW

Forwarding	Control	
Logic

Administrivia

CS	61c Lecture	13:	Pipelining 29

• Project	1	Part	2	due	next	Monday
• Project	Party	this	Wednesday	7-9pm	in	Cory	293

• HW3	will	be	released	by	Friday
• Midterm	1	regrades	due	tonight
• Guerrilla	Session	tonight	7-9pm	in	Cory	293

Agenda
• RISC-V Pipeline
• Pipeline	Control
• Hazards

− Structural
− Data

§ R-type	instructions
§ Load

− Control
• Superscalar	processors
CS	61c Lecture	13:	Pipelining 30



10/10/17

6

Load	Data	Hazard

1	cycle	stall	
unavoidable

CS	61c 31

forward

unaffected

Lecture	13:	Pipelining

Stall	Pipeline

Stall	

CS	61c 32

repeat	and
instruction	
and	forward

Lecture	13:	Pipelining

lw Data	Hazard
• Slot	after	a	load	is	called	a	load	delay	slot

− If	that	instruction	uses	the	result	of	the	load,	then	the	
hardware	will	stall	for	one	cycle

− Equivalent	to	inserting	an	explicit	nop in	the	slot
§ except	the	latter	uses	more	code	space

− Performance	loss
• Idea:

− Put	unrelated	instruction	into	load	delay	slot
− No	performance	loss!

33CS	61c Lecture	13:	Pipelining

Code	Scheduling	to	Avoid	Stalls
• Reorder	code	to	avoid	use	of	load	result	in	the	next	
instruction!
• RISC-V	code	for		D=A+B; E=A+C;

34

Original Order:
lw t1, 0(t0)

lw t2, 4(t0)

add t3, t1, t2

sw t3, 12(t0)
lw t4, 8(t0)

add t5, t1, t4

sw t5, 16(t0)

Alternative:
lw t1, 0(t0)

lw t2, 4(t0)

lw t4, 8(t0)

add t3, t1, t2
sw t3, 12(t0)

add t5, t1, t4

sw t5, 16(t0)

Stall!

Stall!

13	cycles
11	cyclesCS	61c Lecture	13:	Pipelining

Agenda
• RISC-V Pipeline
• Pipeline	Control
• Hazards

− Structural
− Data

§ R-type	instructions
§ Load

− Control
• Superscalar	processors
CS	61c Lecture	13:	Pipelining 35

Control	Hazards

beq t0,	t1,	label

sub	t2,	s0,	t5

or	t6,	s0,	t3

xor t5,	t1,	s0

sw s0,	8(t3)

executed	regardless	of	
branch	outcome!

executed	regardless	of	
branch	outcome!!!

PC	updated	reflecting	
branch	outcome

CS	61c Lecture	13:	Pipelining 36



10/10/17

7

Observation
• If	branch	not	taken,	then	instructions	fetched	
sequentially	after	branch	are	correct
• If	branch	or	jump	taken,	then	need	to	flush	incorrect	
instructions	from	pipeline	by	converting	to	NOPs

CS	61c Lecture	13:	Pipelining 37

Kill	Instructions	after	Branch	if	Taken

beq t0,	t1,	label

sub	t2,	s0,	t5

or	t6,	s0,	t3

label:	xxxxxx PC	updated	reflecting	
branch	outcome

CS	61c Lecture	13:	Pipelining 38

Taken	branch

Convert	to	NOP

Convert	to	NOP

Reducing	Branch	Penalties
• Every	taken	branch	in	simple	pipeline	costs	2	dead	cycles
• To	improve	performance,	use	“branch	prediction”	to	
guess	which	way	branch	will	go	earlier	in	pipeline
• Only	flush	pipeline	if	branch	prediction	was	incorrect

CS	61c Lecture	13:	Pipelining 39

Branch	Prediction

beq t0,	t1,	label

label:	…..

…..

CS	61c Lecture	13:	Pipelining 40

Taken	branch

Guess	next	PC!

Check	guess	correct

Agenda
• RISC-V Pipeline
• Pipeline	Control
• Hazards

− Structural
− Data

§ R-type	instructions
§ Load

− Control
• Superscalar	processors
CS	61c Lecture	13:	Pipelining 41

Increasing	Processor	Performance
1. Clock	rate

− Limited	by	technology	and	power	dissipation
2. Pipelining

− “Overlap”	instruction	execution
− Deeper	pipeline:	5	=>	10	=>	15	stages

§ Less work per	stage	à shorter clock cycle
§ But	more	potential	for	hazards (CPI	>	1)

3. Multi-issue	”super-scalar”	processor
− Multiple	execution	units	(ALUs)

§ Several	instructions	executed	simultaneously
§ CPI	<	1	(ideally)

CS	61c Lecture	13:	Pipelining 42



10/10/17

8

Superscalar	Processor

CS	61c Lecture	13:	Pipelining 43

P&H	p.	340

Benchmark:	CPI	of	Intel	Core	i7

CS	61c Lecture	13:	Pipelining 44

CPI	=	1

P&H	p.	350

In	Conclusion
• Pipelining	increases	throughput	by	overlapping	execution	of	
multiple	instructions
• All	pipeline	stages	have	same	duration

− Choose	partition	that	accommodates	this	constraint
• Hazards	potentially	limit	performance

− Maximizing	performance	requires	programmer/compiler	assistance
− E.g.	Load	and	Branch	delay	slots

• Superscalar	processors	use	multiple	execution	units	for	
additional	instruction	level	parallelism
− Performance	benefit	highly	code	dependent

45CS	61c Lecture	13:	Pipelining

Extra	Slides

CS	61c Lecture	13:	Pipelining 46

Lecture	13:	Pipelining

Pipelining	and	ISA	Design
• RISC-V	ISA	designed	for	pipelining

− All	instructions	are	32-bits
§ Easy	to	fetch	and	decode	in	one	cycle
§ Versus	x86:	1- to	15-byte	instructions

− Few	and	regular	instruction	formats
§ Decode	and	read	registers	in	one	step

− Load/store	addressing
§ Calculate	address	in	3rd stage,	access	memory	in	4th stage

− Alignment	of	memory	operands
§ Memory	access	takes	only	one	cycle

CS	61c 47

Superscalar	Processor
• Multiple	issue	“superscalar”

− Replicate	pipeline	stages	Þmultiple	pipelines
− Start	multiple	instructions	per	clock	cycle
− CPI	<	1,	so	use	Instructions	Per	Cycle	(IPC)
− E.g.,	4GHz	4-way	multiple-issue

§ 16	BIPS,	peak	CPI	=	0.25,	peak	IPC	=	4
− Dependencies	reduce	this	in	practice

• “Out-of-Order”	execution
− Reorder	instructions	dynamically	in	hardware	to	reduce	impact	of	
hazards

• CS152	discusses	these	techniques!
CS	61c Lecture	13:	Pipelining 48


