10/10/17

CS61C:
Great Ideas in Computer Architecture

Lecture 13: Pipelining

Krste Asanovi¢ & Randy Katz
http://inst.eecs.berkeley.edu/~cs61c/fal7

* RISC-V Pipeline

* Pipeline Control

* Hazards
— Structural
— Data

= R-type instructions

= Load
— Control

Agenda

* Superscalar processors

CS6lc Lecture 13: Pipelining
- Resource use in a
g add t0, t1, t2 E-l—ll-*rll’”l—l add t0, t1, t2 [] ‘, i | particular time slot
s
s ort3, t4,t5 DI—IF«I“"’['—I) ort3, t4,t5 [| o _Resourc_e use of .
3] instruction over timdg
& sll 16, 10, t3 MI““#I”{I-%"—EQ g slt t6, 10, 3 [s
3 § .
[| singecyde | Pipelining ____| 2 sw 10, 4(t3) v
. Q
Timing tsep = 100 ... 200 ps teycie = 200 ps [1‘45._‘ fom} |—|§1
Register access only 100 ps Allcycles same length § Iw t0, 8(t3) I ’ I .I &
Instruction time, tistraction = toee = 800 ps 1000 ps © i ’T"{I“‘; I_’_l I’l‘
Clock rate, f, 1/800 ps = 1.25 GHz 1/200 ps = 5 GHz addit2,12,1 2l I .l o
Relative speed 1x 4x
CS6l1c 3

Lecture 13: Pipelining

Single-Cycle RISC-V RV32| Datapath

pcsa
Reg(] alu
W5 batao
atal Reg[rs1] DVIEM 2
inst(11:7)_ s 4rp reale2) b aa 1
pCHa 3 eglrs: " Datak —>|y
{191 ranci) D
inst[24:20] |addrs Datat} _
A <]
[nst31 7 imm.] |immi31.01
en
pCsel inst(31:0] ImmSel RegWEn BrUnBrEqBriT BSel ASel ALUSel ~MemRW wasel

Pipelining RISC-V RV32I Datapath

2 b.

inst[19:15]

inst[24:20]

ataD

ddrD

prddra pataa}
hddra Datan}

Regl]

A

DMEM
Prddr

DataR
Dataw

|
| |
| [rstB17 imm. | immig101
) Gen 1
i |
nstruction Fetch ! Instruction
(F) becode/Register Read
I (D) 1

ALU Execute
(X)

(M)

Write Back
(w)

10/10/17

Pipelined RISC-V RV32| Datapath Each stage operates on different instruction

Recalculate PC+4 in M stage to avoid Iw t0, 8(t3) | swt0, 4(t3) !
|l

sending both PC and PC+4 down pipeline|

slt t6, 10, t3 1 ort3, t4,t5 | add to,
1 | 1,12

v

(2

. Must pipeline instruction along with data, so i o i . L
56l control operates correctly in each stage - 6l Pipeline registers separate stages, hold data for each instruction in flight

Agenda Pipelined Control

o * Control signals derived from instruction
* RISC-V Plpellne — As in single-cycle implementation

. . — Information is stored in pipeline registers for use by later stages
* Pipeline Control

* Hazards N e
— Structural R) e ‘ e
- Data NP=rol .
= R-type instructions o ’
= Load
- Control
* Superscalar processors
T o exmEm =

ecture 13: Pipelining 9 s 6lc J

Hazards Ahead Agenda

/

* RISC-V Pipeline
* Pipeline Control

* Hazards
— Structural
— Data
= R-type instructions
= Load
- Control

* Superscalar processors

cs 61 Lecture 13: Pipelining 11 s 6lc

10/10/17

Structural Hazard

* Problem: Two or more instructions in the pipeline
compete for access to a single physical resource

* Solution 1: Instructions take it in turns to use resource,

some instructions have to stall
* Solution 2: Add more hardware to machine

* Can always solve a structural hazard by adding more
hardware

s 6lc ecture 13: Pipelining

Regfile Structural Hazards

* Each instruction:

—can read up to two operands in decode stage
— can write one value in writeback stage

* Avoid structural hazard by having separate “ports”
—two independent read ports and one independent write port

* Three accesses per cycle can happen simultaneously

Cs6lc Lecture 13: Pipelining

Structural Hazard: Memory Access

* Instruction and data
memory used

add t0, t1, t2 |]—I-*"I_I—"I-|Q‘=I-lB simultaneously
B v’ Use two separate

| orzte15 r"I““ memories
5
2 | st 0 u%rfﬂuft
,
@ sw t0, 4(t3)
8
3
2 .
5 | wto,8(3) @FTMMI“
3

ecture 13: Pipelining

Instruction and Data Caches

Processor

Cache

Datapath
 E— ol—
— DEIE]

Arithmetic & Logic Unit

Memory (DRAM)

Caches: small and fast “buffer” memories

Lecture 13: Pipelining

Structural Hazards — Summary

* Conflict for use of a resource
* In RISC-V pipeline with a single memory
- Load/store requires data access

— Without separate memories, instruction fetch would have to stall
for that cycle

= All other operations in pipeline would have to wait

* Pipelined datapaths require separate instruction/data
memories

- Or separate instruction/data caches

* RISC ISAs (including RISC-V) designed to avoid structural
hazards

— e.g. at most one memory access/instruction

Agenda

* RISC-V Pipeline
* Pipeline Control
* Hazards

— Structural
- Data

= R-type instructions
= Load

- Control

* Superscalar processors

cs6

1c Lecture 13: Pipelining 18

10/10/17

Data Hazard: Register Access

« Separate ports, but what if write to same value as read?
* Does sw in the example fetch the old or new value?

add t0, t1, t2 [v

Register Access Policy

« Exploit high speed of register
file (100 ps)

F"‘I—“E 1) WB updates value
2) ID reads new value
Iy i

add t0, t1, t2

st Bled®
a
ort3, t4, t5 EI-I-‘“ ot S| ort3 4,15 El—lﬂl—l'»-l-.l—l « Indicated in diagram by
2 5 n shading
= _ - > B =
2| st | o] 5 2| 00 afafieleds
= o
o = 2 .
2| woam D g = 2| swio am) @ e =
3 o
5 e 1~
5 | wto, 8(t3) m—l-raw * 93 Iw t0, 8(t3) EI—I—‘«I‘I"I—.I—I ol
a
o
Might not always be possible to write then read in same cycle, especially in
high-frequency designs. Check assumptions in any question.
CS6lc Lecture 13: Pipelining 19 CS 6! Lecture 13: Pipelining 20
Value of s0 Value of s0 |
add s0, 0, t1 B add s0, t1, t2
5
sub t2, s0, t0 g sub t2, s0, t5
5 s
a 5
g ort6, s0, t3 Z ort6, s0, t3
s 2 xor t5, t1, sO
2 xor t5, t1, sO @ , 1,
a
2]
c
o sw s0, 8(t3) sw s0, 8(t3)
3
Without some fix, sub and or will calculate wrong result! Without some fix, sub and or will calculate wrong result!
Cs6lc Lecture 13: Pipelining 21 s 6! Lecture 13: Pipelining 2

Solution 1: Stalling

* Problem: Instruction depends on result from previous instruction

~ add <0, t0, t1
sub 2,50, t3
Time 200 400 600 800 1000 1200 1400 1600

sub $12, $50, $13

* Bubble:
- effectively NOP: affected pipeline stages do “nothing”

s 61c

Stalls and Performance

« Stalls reduce performance
— But stalls are required to get correct results

* Compiler can arrange code to avoid hazards and stalls
— Requires knowledge of the pipeline structure

10/10/17

Solution 2: Forwarding

Value of t0

add t0, t1, t2
or t3, t0, t5

sub t6, t0, t3
xor t5, t1, t0

sw t0, 8(t3)

22uanbas uopoNsul

Forwarding: grab operand from pipeline stage,
co rather than register file -

Forwarding (aka Bypassing)

* Use result when it is computed
— Don't wait for it to be stored in a register
— Requires extra connections in the datapath

Program

execution 200 400 600 800 1000
order Time

(in instructions)
add 520, $10, 11 El_c 5 -ﬁ we
v
\
a2, 30,51 (B 88 e

Cs6lc Lecture 13: Pipelining

1) Detect Need for Forwarding

(example)

Compare destination of
older instructions in

pipeline with sources of
new instruction in decode
insty.rd stage.

Must ignore writes to x0!

Forwarding Path

I pCx

rsly

ort3,t0,t5

Cs6lc 27

immy Ir
Iinstx
Forwarding Control
CS6lc LOgiC

Administrivia
* Project 1 Part 2 due next Monday
* Project Party this Wednesday 7-9pm in Cory 293
* HW3 will be released by Friday
* Midterm 1 regrades due tonight
* Guerrilla Session tonight 7-9pm in Cory 293

cs6lc Lecture 13: Pipelining 29

Agenda

* RISC-V Pipeline
* Pipeline Control
* Hazards
— Structural
— Data
= R-type instructions
= Load
- Control

* Superscalar processors

s 6lc Lecture 13: Pipelining

10/10/17

Load Data Hazard

Time (in clock cyclos)
ccn

ccz ccs cca ccs cce cc7 cCe

Program
execution

(in instructions)
w52, 20(51)
and $4, 52, $5
orss, 52, 56

add $9, 54, 52

sit$1, 56, 57

ecture 13: Pipelining

Stall Pipeline

Time (in clock
cc1 ccz

Program
execution

order
(in instructions)

w52, 2061) @—H-zh

and becomes nop @_H.a.a 2

and $4, 52, 85

repeat and
instruction
fes | and forward

or $8, 52, 6

add 9, 54, 52

Cs6lc

Lecture 13: Pipelining

1w Data Hazard

* Slot after a load is called a load delay slot

— If that instruction uses the result of the load, then the
hardware will stall for one cycle

— Equivalent to inserting an explicit nop in the slot
= except the latter uses more code space
- Performance loss

* |dea:

— Put unrelated instruction into load delay slot
— No performance loss!

ecture 13: Pipelining

Code Scheduling to Avoid Stalls

* Reorder code to avoid use of load result in the next
instruction!

* RISC-V code for D=A+B; E=A+C;

Original Order: Alternative:
1w tl, 0(t0) 1w tl, 0(t0)
1w (£2)4(t0)

Stall! <444 t3, tl,
sw t3, 12(t0)

Ceap8(t0)

1w
|
Stalll =244 t5, £1,¢E4)
Socsw o £5, 16(t0)

13 cyelés® > Pl sw €5, 16(£0) 11 cycles,,

Agenda

* RISC-V Pipeline
* Pipeline Control
* Hazards
— Structural
— Data
= R-type instructions
= Load
— Control

* Superscalar processors

cs6lc

Control Hazards

beq t0, t1, label hl—l—*’rl"l—ﬁ%l—l&i

sub t2, s0, t5 E.—I-H«: kol executed regardless of
branch outcome!
ort6, s0, t3 [A om| o executed regardless of
o branch outcome!!!
xor t5, t1, sO EI—I-ra’ = PC updated reflecting

branch outcome

sw s0, 8(t3) \-I—I—f«,’rl"-l-@l—lgs

10/10/17

Observation

* If branch not taken, then instructions fetched
sequentially after branch are correct

* If branch or jump taken, then need to flush incorrect
instructions from pipeline by converting to NOPs

cs6lc ecture 13: Pipelining 37

Kill Instructions after Branch if Taken

beq t0, t1, label [Taken branch

Convert to NOP

sub t2, s0, t5
A | Convert to NOP
ort6, s0, t3 f of
label: X000 .I_I_ag'—l-’_l.m.ﬁg PC updated reflecting
) branch outcome
T plets

s 6lc Lecture 13: Pipelining 38

Reducing Branch Penalties

* Every taken branch in simple pipeline costs 2 dead cycles

* To improve performance, use “branch prediction” to
guess which way branch will go earlier in pipeline

* Only flush pipeline if branch prediction was incorrect

s 6lc ecture 13: Pipelining 39

Branch Prediction

beq t0, t1, label ll‘t‘:

Taken branch

label: bo! Guess next PC!

Check guess correct

i I

Lecture 13: Pipelining 40

Agenda

* RISC-V Pipeline
* Pipeline Control
* Hazards
— Structural
— Data
= R-type instructions
= Load
- Control

* Superscalar processors

cs6lc Lecture 13: Pipelining a1

Increasing Processor Performance

1. Clockrate
— Limited by technology and power dissipation
2. Pipelining

— “Overlap” instruction execution
— Deeper pipeline: 5 => 10 => 15 stages
= Less work per stage = shorter clock cycle
= But more potential for hazards (CPI1 > 1)
3. Multi-issue “super-scalar” processor
— Multiple execution units (ALUs)
= Several instructions executed simultaneously
= CPI< 1 (ideally)

s 6lc Lecture 13: Pipelining a2

10/10/17

Superscalar Processor

Instruction fetch
and decode unit

e e

o

Commit
unit

e ecture 13: Pipelining 3

In-order issue

In-order commit

P&H p. 340

Benchmark: CPI of Intel Core i7

Stalls, misspeculation

CPI=1 3

P&H p. 350

CPI of Intel Core i7 920 running SPEC2006 integer benchmarks.

Cs6ilc Lecture 13: Pipelining

In Conclusion

* Pipelining increases throughput by overlapping execution of
multiple instructions
« All pipeline stages have same duration
— Choose partition that accommodates this constraint
* Hazards potentially limit performance
- Maximizing performance requires programmer/compiler assistance
- E.g. Load and Branch delay slots
« Superscalar processors use multiple execution units for
additional instruction level parallelism
- Performance benefit highly code dependent

Cs61c ecture 13: Pipelining

Extra Slides

Lecture 13: Pipelining

Pipelining and ISA Design

* RISC-V ISA designed for pipelining
- All instructions are 32-bits
= Easy to fetch and decode in one cycle
= Versus x86: 1- to 15-byte instructions
- Few and regular instruction formats
= Decode and read registers in one step
- Load/store addressing
= Calculate address in 3™ stage, access memory in 4t stage
— Alignment of memory operands
= Memory access takes only one cycle

Superscalar Processor

* Multiple issue “superscalar”
— Replicate pipeline stages = multiple pipelines
— Start multiple instructions per clock cycle
— CPl < 1, so use Instructions Per Cycle (IPC)
- E.g., 4GHz 4-way multiple-issue
= 16 BIPS, peak CPI = 0.25, peak IPC =4
— Dependencies reduce this in practice

* “Out-of-Order” execution

— Reorder instructions dynamically in hardware to reduce impact of
hazards

* CS152 discusses these techniques!

1c re 13: Pipelining

