
CS 61C RISC-V Pipelining and Hazards
Fall 2019 Discussion 8: October 21, 2019

1 Review: Finite State Machines
Automatons are machines that receive input and use various states to produce

output. A finite state machine is a type of simple automaton where the next state

and output depend only on the current state and input. Each state is represented by

a circle, and every proper finite state machine has a starting state, signified either

with the label “Start” or a single arrow leading into it. Each transition between

states is labeled [input]/[output].

1.1 What pattern in a bitstring does the FSM below detect? What would it output for

the input bitstring “011001001110”?

00/0 1 1/1

0/0

1/0

Start

The FSM outputs a 1 if it detects the pattern “11”.

The FSM would output “001000000110”

1.2 Fill in the following FSM for outputting a 1 whenever we have two repeating bits as

the most recent bits, and a 0 otherwise. You may not need all states.

2 RISC-V Pipelining and Hazards

Start

1/0

0/0

1

1/1

0/0

0

0/1

1/0

1.3 Write an FSM that will output a 1 if it recognizes the regex pattern {10+1}.

2 Pipelining Registers
In order to pipeline, we add registers between the five datapath stages. Label each

of the five stages (IF, ID, EX, MEM, and WB) on the diagram below.

2.1 What is the purpose of the new registers?

RISC-V Pipelining and Hazards 3

When we pipeline the datapath, the values from each stage need to be passed on at

each clock cycle. Each stage in the pipeline only operates on a small set of values,

but those values need to be correct with respect to the instruction that is currently

being processed. Say we use load word (lw) as an example: if it is in the EX stage,

then the EX stage should look like a snapshot of the single-cycle datapath. The

values on the rs1, rs2, immediate, and PC values should be as if lw was the only

instruction in the entire path. This also includes the control logic: the instruction is

passed in at each stage, the appropriate control signals are generated for the stage

of interest, and that stage can execute properly.

2.2 Why do we add +4 to the PC again in the memory stage?

We add +4 to the PC again in the memory stage so we dont need to pass both PC

and PC+4 along the whole pipeline

2.3 Why do we need to save the instruction in a register multiple times?

We need to save the instruction in a register multiple times because each pipeline

stage needs to receive the right control signals for the instruction currently in that

stage.

3 Performance Analysis

Register clk-to-q 30 ps

Register setup 20 ps

Mux 25 ps

Branch comp. 75 ps

ALU 200 ps

Memory read 250 ps

Memory write 200 ps

RegFile read 150 ps

RegFile setup 20 ps

3.1 With the delays provided above for each of the datapath components, what would

be the fastest possible clock time for a single cycle datapath?

tclk ≥ tPC clk-to-q + tIMEM read + tRF read + tmux + tALU + tDMEM read + tmux + tRF setup

≥ 30 + 250 + 150 + 25 + 200 + 250 + 25 + 20

≥ 950 ps

1

950 ps
= 1.05 GHz

3.2 What is the fastest possible clock time for a pipelined datapath?

4 RISC-V Pipelining and Hazards

IF : tPC clk-to-q + tIMEM read + tReg setup = 30 + 250 + 20 = 300 ps

ID : tReg clk-to-q + tRF read + tReg setup = 30 + 150 + 20 = 200 ps

EX : tReg clk-to-q + tmux + tALU + tReg setup + tmux = 30 + 25 + 200 + 20 + 25 = 300 ps

MEM : tReg clk-to-q + tDMEM read + tmux + tReg setup = 30 + 250 + 25 + 20 = 325 ps

WB : tReg clk-to-q + tRF setup = 30 + 20 = 50 ps

max(IF, ID,EX,MEM,WB) = 325 ps

NOTE: For the EX stage, the branch comparator time is overshadowed by the ALU

computation (The same would be true in the ID stage as well, but since there is no

mentioned time for Immediate Generator, we assumed here it is trivial):

Branch comparator : tPC clk-to-q + tBranch comp. = 30 + 75 = 105 ps

ALU computation : tReg clk-to-q + tmux + tALU + tReg setup = 25 + 200 = 275 ps

3.3 What is the speedup from the single cycle datapath to the pipelined datapath? Why

is the speedup less than 5?

950 ps
325 ps , or a 2.9 times speedup. The speedup is less than 5 because of (1) the necessity

of adding pipeline registers, which have clk-to-q and setup times, and (2) the need

to set the clock to the maximum of the five stages, which take different amounts of

time.

Note: because of hazards, which require additional logic to resolve, the actual

speedup would likely be even less than 2.9 times.

4 Hazards
One of the costs of pipelining is that it introduces three types of pipeline hazards:

structural hazards, data hazards, and control hazards.

Structural Hazards
Structural hazards occur when more than one instruction needs to use the same

datapath resource at the same time. There are two main causes of structural hazards:

Register File The register file is accessed both during ID, when it is read, and

during WB, when it is written to. We can solve this by having separate

read and write ports. To account for reads and writes to the same register,

processors usually write to the register during the first half of the clock cycle,

and read from it during in the second half. This is also known as double

pumping.

RISC-V Pipelining and Hazards 5

Memory Memory is accessed for both instructions and data. Having a separate

instruction memory (abbreviated IMEM) and data memory (abbreviated

DMEM) solves this hazard.

Something to remember about structural hazards is that they can always be resolved

by adding more hardware.

Data Hazards
Data hazards are caused by data dependencies between instructions. In CS 61C,

where we will always assume that instructions are always going through the processor

in order, we see data hazards when an instruction reads a register before a previous

instruction has finished writing to that register.

Forwarding

Most data hazards can be resolved by forwarding, which is when the result of the

EX or MEM stage is sent to the EX stage for a following instruction to use.

4.1 Look for data hazards in the code below, and figure out how forwarding could be

used to solve them.

Instruction C1 C2 C3 C4 C5 C6 C7

1. addi t0, a0, -1 IF ID EX MEM WB

2. and s2, t0, a0 IF ID EX MEM WB

3. sltiu a0, t0, 5 IF ID EX MEM WB

There are two data hazards, between instructions 1 and 2, and between instructions

1 and 3. The first could be resolved by forwarding the result of the EX stage in

C3 to the beginning of the EX stage in C4, and the second could be resolved by

forwarding the result of the EX stage in C3 to the beginning of the EX stage in C5.

4.2 Imagine you are a hardware designer working on a CPU’s forwarding control logic.

How many instructions after the addi instruction could be affected by data hazards

created by this addi instruction?

Three instructions. For example, with the addi instruction, any instruction that uses

t0 that has its ID stage in C3, C4, or C5 will not have the result of addi’s writeback

in C5. If, however, we are allowed to assume double-pumping (write-then-read to

registers), then it would only affect two instructions since the ID stage of instruction

4 would be allowed to line up with the WB stage of intruction 1. (Side note: how

is this implemented in hardware? We add 2 wires: one from the beginning of the

MEM stage for the output of the ALU and one from the beginning of the WB stage.

Both of these wires will connect to the A mux in the EX stage.)

Stalls

4.3 Look for data hazards in the code below. One of them cannot be solved with

forwarding—why? What can we do to solve this hazard?

6 RISC-V Pipelining and Hazards

Instruction C1 C2 C3 C4 C5 C6 C7 C8

1. addi s0, s0, 1 IF ID EX MEM WB

2. addi t0, t0, 4 IF ID EX MEM WB

3. lw t1, 0(t0) IF ID EX MEM WB

4. add t2, t1, x0 IF ID EX MEM WB

There are two data hazards in the code. The first hazard is between instructions

2 and 3, from t0, and the second is between instructions 3 and 4, from t1. The

hazard between instructions 2 and 3 can be resolved with forwarding, but the hazard

between instructions 3 and 4 cannot be resolved with forwarding. This is because

even with forwarding, instruction 4 needs the result of instruction 3 at the beginning

of C6, and it wont be ready until the end of C6.

We can fix this by inserting a nop (no-operation) between instructions 3 and 4.

4.4 Say you are the compiler and can re-order instructions to minimize data hazards

while guaranteeing the same output. How can you fix the code above?

Reorder the instructions 2-3-1-4, because instruction 1 has no dependencies.

Detecting Data Hazards

Say we have the rs1, rs2, RegWEn, and rd signals for two instructions (instruction

n and instruction n + 1) and we wish to determine if a data hazard exists across the

instructions. We can simply check to see if the rd for instruction n matches either

rs1 or rs2 of instruction n+ 1, indicating that such a hazard exists (think, why does

this make sense?).

We could then use our hazard detection to determine which forwarding paths/number

of stalls (if any) are necessary to take to ensure proper instruction execution. In

pseudo-code, this could look something like the following:

if (rs1(n + 1) == rd(n) || rs2(n + 1) == rd(n) && RegWen(n) == 1) {

forward ALU output of instruction n

}

Control Hazards
Control hazards are caused by jump and branch instructions, because for all

jumps and some branches, the next PC is not PC + 4, but the result of the

computation completed in the EX stage. We could stall the pipeline for control

hazards, but this decreases performance.

4.5 Besides stalling, what can we do to resolve control hazards?

RISC-V Pipelining and Hazards 7

We can predict which way branches will go, and when this prediction is incorrect,

“flush” the pipeline and continue with the correct instruction. (The most naive

prediction method is to simply predict that branches are always not taken).

Extra for Experience
4.6 Given the RISC-V code above and a pipelined CPU with no forwarding, how many

hazards would there be? What types are each hazard? Consider all possible hazards

from all pairs of instructions.

How many stalls would there need to be in order to fix the data hazard(s)? What

about the control hazard(s)?

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9

1. sub t1, s0, s1 IF ID EX MEM WB

2. or s0, t0, t1 IF ID EX MEM WB

3. sw s1, 100(s0) IF ID EX MEM WB

4. bgeu s0, s2, l IF ID EX MEM WB

5. add t2, x0, x0 IF ID EX MEM WB

There are four hazards: between instructions 1 and 2 (data hazard from t1), instruc-

tions 2 and 3 (data hazard from s0), instructions 2 and 4 (from s0), and instructions

4 and 5 (a control hazard).

Assuming that we can read and write to the RegFile on the same cycle, two stalls are

needed between instructions 1 and 2, and two stalls are needed between instructions

2 and 3. No stalls are needed for the control hazard, because it can be handled with

branch prediction/flushing the pipeline.

8 RISC-V Pipelining and Hazards

	Review: Finite State Machines
	Pipelining Registers
	Performance Analysis
	Hazards

