
CS 61C MapReduce, Spark, WSC
Fall 2019 Discussion 13: December 2, 2019

1 MapReduce
For each problem below, write pseudocode to complete the implementations. Tips:

• The input to each MapReduce job is given by the signature of map().

• emit(key k, value v) outputs the key-value pair (k, v).

• for var in list can be used to iterate through Iterables or you can call

the hasNext() and next() functions.

• Usable data types: int, float, String. You may also use lists and custom

data types composed of the aforementioned types.

• intersection(list1, list2) returns a list of the common elements of list1,

list2.

1.1 Given a set of coins and each coin’s owner in the form of a list of CoinPairs, compute

the number of coins of each denomination that a person has.

CoinPair:

String person

String coinType

1 map(CoinPair pair): 1 reduce(________________, ________________):

1.2 Using the output of the first MapReduce, compute each person’s amount of money.

valueOfCoin(String coinType) returns a float corresponding to the dollar value of

the coin.

1 map(tuple<CoinPair, int> output): 1 reduce(________________, ________________):



2 MapReduce, Spark, WSC

2 Spark
Resilient Distributed Datasets (RDD) are the primary abstraction of a dis-

tributed collection of items

Transforms RDD → RDD

map(f) Return a new transformed item formed by calling f on a source element.

flatMap(f) Similar to map, but each input item can be mapped to 0 or more

output items (so f should return a sequence rather than a single item).

reduceByKey(f) When called on a dataset of (K,V ) pairs, returns a dataset

of (K,V ) pairs where the values for each key are aggregated using the

given reduce function f , which must be of type (V, V ) → V .

Actions RDD → V alue

reduce(f) Aggregate the elements of the dataset regardless of keys using a

function f .

Call sc.parallelize(data) to parallelize a Python collection, data.

2.1 Given a set of coins and each coin’s owner, compute the number of coins of each

denomination that a person has. Then, using the output of the first result, compute

each person’s amount of money. Assume valueOfCoin(coinType) is defined and

returns the dollar value of the coin.

The type of coinPairs is a tuple of (person, coinType) pairs.

1 coinData = sc.parallelize(coinPairs)

2.2 Given a student’s name and course taken, output their name and total GPA.

CourseData:

int courseID

float studentGrade // a number from 0-4

The type of students is a list of (studentName, courseData) pairs.

1 studentsData = sc.parallelize(students)



MapReduce, Spark, WSC 3

3 MapReduce/Spark Practice: Optimize the Friend Zone

3.1 You are given a list of tuples containing people’s unique int ID and a list of the IDs

of their friends. Compute the list of mutual friends between each pair of friends in a

social network. You have access to the intersection function, which takes in two

lists finds the set of elements that appear in both lists.

FriendPair:

int friendOne

int friendTwo

1 map(tuple<int, list<int>> info): 1 reduce(________________, ________________):

3.2 Solve the problem above using Spark.

The type of persons is a list of (personID, list(friendID)) pairs.

1 def genFriendPairAndValue(pair):

2 pID, fIDs = pair

3 return [((pID, fID), fIDs) if pID < fID else ((fID, pID), fIDs) for fID in fIDs]

4

5 def intersection(l1, l2):

6 return [x for x in l1 if x in l2]

7

8 personsData = sc.parallelize(persons)

4 Warehouse-Scale Computing
Sources speculate Google has over 1 million servers. Assume each of the 1 million

servers draw an average of 200W, the PUE is 1.5, and that Google pays an average

of 6 cents per kilowatt-hour for datacenter electricity.

4.1 Estimate Google’s annual power bill for its datacenters.

4.2 Google reduced the PUE of a 50,000-machine datacenter from 1.5 to 1.25 without

decreasing the power supplied to the servers. What’s the cost savings per year?


	MapReduce
	Spark
	MapReduce/Spark Practice: Optimize the Friend Zone
	Warehouse-Scale Computing

