
Direct-Mapped and Set Associative Caches
Instructor:  Steven Ho



Great Idea #3: Principle of Locality/
Memory Hierarchy
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Extended Review of Last Lecture

• Why have caches?
– Intermediate level between CPU and memory
– In-between in size, cost, and speed

• Memory (hierarchy, organization, structures) 
set up to exploit temporal and spatial locality
– Temporal:  If accessed, will access again soon
– Spatial:  If accessed, will access others around it

• Caches hold a subset of memory (in blocks)
– We are studying how they are designed for fast 

and efficient operation (lookup, access, storage)
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Extended Review of Last Lecture

• Fully Associative Caches:
– Every block can go in any slot

• Use random or LRU replacement policy when cache full

– Memory address breakdown (on request)
• Tag field is unique identifier (which block is currently in 

slot)

• Offset field indexes into block (by bytes)

– Each cache slot holds block data, tag, valid bit, and 
dirty bit (dirty bit is only for write-back)
• The whole cache maintains LRU bits
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Extended Review of Last Lecture

• On memory access (read or write):
1) Look at ALL cache slots in parallel
2) If Valid bit is 0, then ignore (garbage)
3) If Valid bit is 1 and Tag matches, then use that 

data

• On write, set Dirty bit if write-back
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• Fully associative cache layout in our example
– 6-bit address space, 16-byte cache with 4-byte blocks

– How many blocks do we have? C/K = 4 blocks

– LRU replacement (2 bits)

– Offset – 2 bits, Tag – 4 bits

Extended Review of Last Lecture
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Offset

Slot
0
1
2
3

cache size (C) block size (K)26 = 64 B address space

LRU bits

V Tag 00 01 10 11 LRU
X XXXX 0x?? 0x?? 0x?? 0x?? XX
X XXXX 0x?? 0x?? 0x?? 0x?? XX
X XXXX 0x?? 0x?? 0x?? 0x?? XX
X XXXX 0x?? 0x?? 0x?? 0x?? XX

Yesterday’s example was write through and looked like this



FA Cache Examples (3/4)
1) Consider the following addresses being requested:

                                       0     2     2     0     16    20     8     4
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0

2

miss

hit

Starting with a cold cache:

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

2 hit

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

0 hit

000000 000010

000000000010



1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

FA Cache Examples (3/4)
1) Consider the following addresses being requested:

                                       0     2     2     0     16    20     8     4
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16

8

miss

miss

Starting with a cold cache:

• 8 requests, 5 misses – ordering matters!

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

20 miss

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

4 miss

M    H    H     H
010000 010100

000100001000



FA Cache Examples (4/4)
3) Original sequence, but double block size to 8B

                                       0     2     4     8     20    16     0     2
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0
miss

Starting with a cold cache:

0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

2

4

hit

hit

8
miss

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

000000

000010

000100

001000



FA Cache Examples (4/4)
3) Original sequence, but double block size

                                       0     2     4     8     20    16     0     2
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20
miss

Starting with a cold cache:

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]

16

0

hit

miss

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

2
hit

• 8 requests, 4 misses – cache parameters matter!

M    H    H     M
010100

010000

000000

000010
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Question:
Starting with the same cold cache as the first 3 
examples, which of the sequences below will 
result in the final state of the cache shown here:

0       2     12       4     16      8       0       6(A)

0       8       4     16       0    12       6       2(B)

6     12       4       8       2    16       0       0(C)

2       8       0       4       6    16     12       0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

LRU
10

0

1

2

3
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Question:
Starting with the same cold cache as the first 3 
examples, which of the sequences below will 
result in the final state of the cache shown here:

0       2     12       4     16      8       0       6(A)

0       8       4     16       0    12       6       2(B)

6     12       4       8       2    16       0       0(C)

2       8       0       4       6    16     12       0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

LRU
10

0

1

2

3
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Question:
Starting with the same cold cache as the first 3 
examples, which of the sequences below will 
result in the final state of the cache shown here:

0       2     12       4     16      8       0       6(A)

0       8       4     16       0    12       6       2(B)

6     12       4       8       2    16       0       0(C)

2       8       0       4       6    16     12       0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

LRU
10

0

1

2

3



Memory Accesses 

• The picture so far:
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Cache
Addr

miss

hit

data

CPU

Main 
Memory



Handling Write Hits

• Write hits (D$)
1) Write-Through Policy:  Always write data to 

cache and to memory (through cache)
• Forces cache and memory to always be consistent

• Slow!  (every memory access is long) 

• Include a Write Buffer that updates memory in parallel 
with processor
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Assume present in all schemes 
when writing to memory



Handling Write Hits

• Write hits (D$)
2) Write-Back Policy:  Write data only to cache, 

then update memory when block is removed
• Allows cache and memory to be inconsistent

• Multiple writes collected in cache; single write to 
memory per block

• Dirty bit:  Extra bit per cache row that is set if block was 
written to (is “dirty”) and needs to be written back
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• Miss penalty grows as block size does

• Read misses (I$ and D$)
– Stall execution, fetch block from memory, put in 

cache, send requested data to processor, resume

• Write misses (D$)
– Always have to update block from memory

– We have to make a choice:

• Carry the updated block into cache or not?

Handling Cache Misses
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• Write Allocate policy: when we bring the block 
into the cache after a write miss

• No Write Allocate policy: only change main 
memory after a write miss
– Write allocate almost always paired with 

write-back
• Eg: Accessing same address many times -> cache it

– No write allocate typically paired with 
write-through
• Eg: Infrequent/random writes -> don’t bother caching it

Write Allocate
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Updated Cache Picture

• Fully associative, write through
– Same as our simplified examples from before

• Fully associative, write back

• Write miss procedure (write allocate or not) 
only affects behavior, not design

7/16/2018 CS61C Su18 - Lecture 15 19

V D Tag 00 01 10 11

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

Slot

0

1

2

3

LRU

XX



How do we use this thing?

• Nothing changes from the programmer’s 
perspective
– Still just issuing lw and sw instructions

• The rest is handled in hardware: 
– Checking the cache

– Extracting the data using the offset

• Why should a programmer care?
– Understanding cache parameters = faster 

programs

20



Agenda
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• Review of yesterday
• Administrativia
• Direct-Mapped Caches

• Set Associative Caches

• Cache Performance

21



Administrivia
• HW3/4 Due today
• HW5 Released, due next Monday (7/23)
• Project 3 Due Friday (7/20)
– Parties tonight @Soda 405/411 and Friday @Woz 

(4-6pm for both)
– If you ask for help please diagnose problem spots

• Guerilla Session on Wed. 4-6pm @Soda 405

• Midterm 2 is coming up! Next Wed. in lecture
– Covering up to Performance

– Review Session Sunday 2-4pm @GPB 100
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Direct-Mapped Caches (1/3)

• Each memory block is mapped to exactly one 
slot in the cache (direct-mapped)
– Every block has only one “home”

– Use hash function to determine which slot

• Comparison with fully associative
– Check just one slot for a block (faster!)

– No replacement policy necessary

– Access pattern may leave empty slots in cache
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Direct-Mapped Caches (2/3)

• Offset field remains the same as before

• Recall:  blocks consist of adjacent bytes
– Do we want adjacent blocks to map to same slot?

– Index field:  Apply hash function to block address 
to determine which slot the block goes in
• (block address) modulo (# of blocks in the cache)

• Tag field maintains same function (identifier), 
but is now shorter

7/16/2018 CS61C Su18 - Lecture 15 24



TIO Address Breakdown

• Memory address fields:

• Meaning of the field sizes:
– O bits  ↔  2O bytes/block = 2O-2 words/block

– I bits  ↔  2I slots in cache = cache size / block size

– T bits = A – I – O, where A = # of address bits 
(A = 32 here)
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Tag Index Offset
31 0

T bits I bits O bits



Direct-Mapped Caches (3/3)

• What’s actually in the cache?
– Block of data (8 × K = 8 × 2O bits)

– Tag field of address as identifier (T bits)

– Valid bit (1 bit)

– Dirty bit (1 bit if write-back)

– No replacement management bits!

• Total bits in cache = # slots × (8×K + T + 1 + 1)
       = 2I × (8×2O + T + 1 + 1) bits
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DM Cache Example (1/5)

• Cache parameters:
– Direct-mapped, address space of 64B, block size of 

4B, cache size of 16B, write-through

• TIO Breakdown:
– O = log

2
(4) = 2

– Cache size / block size = 16/4 = 4, so I = log
2
(4) = 2

– A = log
2
(64) = 6 bits, so T = 6 – 2 – 2 = 2

• Bits in cache = 22 × (8×22 + 2 + 1) = 140 bits
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XX XX XXMemory Addresses:

Block address



DM Cache Example (2/5)

• Cache parameters:
– Direct-mapped, address space of 64B, block size of 

4B, cache size of 16B, write-through
– Offset – 2 bits, Index – 2 bits, Tag – 2 bits

• 35 bits per index/slot, 140 bits to implement
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V Tag 00 01 10 11

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

Index

00

01

10

11

Offset



DM Cache Example (3/5)
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Main Memory: Which blocks map to 
each row of the cache?
(see colors)

On a memory request:
(let’s say 001011

two
)

1) Take Index field (10)

2) Check if Valid bit is 
true in that row of cache

3) If valid, then check if 
Tag matches

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

00

01

10

11

Cache:

Tag DataValidIndex

Cache slots exactly 
match the Index field

Which blocks map to 
each row of the cache?
(see colors)

Main Memory shown 
in blocks, so offset 
bits not shown (x’s)



DM Cache Example (4/5)
• Consider the sequence of memory address accesses

                                       0     2     4     8     20    16     0     2
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0

4

miss

miss

Starting with a cold cache:

0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

2 hit

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

8 miss
1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
1 00 M[8] M[9] M[10] M[11]
0 00 0x?? 0x?? 0x?? 0x??

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

000000 000010

001000000100



DM Cache Example (5/5)
• Consider the sequence of memory address accesses

                                       0     2     4     8     20    16     0     2
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20

0

miss

miss

Starting with a cold cache:

• 8 requests, 6 misses – last slot was never used!

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
1 00 M[8] M[9] M[10] M[11]
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
1 01 M[20] M[21] M[22] M[23]
1 00 M[8] M[9] M[10] M[11]
0 00 0x?? 0x?? 0x?? 0x??

1 01 M[16] M[17] M[18] M[19]
1 01 M[20] M[21] M[22] M[23]
1 00 M[8] M[9] M[10] M[11]
0 00 0x?? 0x?? 0x?? 0x??

16 miss

1 00 M[0] M[1] M[2] M[3]
1 01 M[20] M[21] M[22] M[23]
1 00 M[8] M[9] M[10] M[11]
0 00 0x?? 0x?? 0x?? 0x??

2 hit

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

010100 010000

000010000000



Worst-Case for Direct-Mapped
• Cold DM $ that holds four 1-word blocks
• Consider the memory accesses:  0, 16, 0, 16,...

       000000  010000     000000

• HR of 0%
– Ping pong effect:  alternating requests that map 

into the same cache slot

• Does fully associative have this problem?

7/16/2018 CS61C Su18 - Lecture 15 32

0 16 0Miss Miss Miss
00      M[0-3] 00      M[0-3] 01    M[16-19]

. . .



Comparison So Far

• Fully associative
– Block can go into any slot
– Must check ALL cache slots on request (“slow”)
– TO breakdown (i.e. I = 0 bits)
– “Worst case” still fills cache (more efficient)

• Direct-mapped
– Block goes into one specific slot (set by Index field)
– Only check ONE cache slot on request (“fast”)
– TIO breakdown
– “Worst case” may only use 1 slot (less efficient)
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Meet the Staff

34

Sukrit Suvansh

Favorite Villain The Lannisters
Logisim 
[De]Evolution

What would you 
protest

Prerequisite 
enforcement

CS Design 
requirement

What are you 
passionate about?

Musicc American football

What you'd want to 
be famous for?

Arora's Algorithm Facial Hair
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Agenda

7/16/2018

• Review of yesterday

• Administrivia
• Direct-Mapped Caches

• Set Associative Caches

• Cache Performance
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Set Associative Caches

• Compromise!
– More flexible than DM, more structured than FA

• N-way set-associative:  Divide $ into sets, each 
of which consists of N slots
– Memory block maps to a set determined by Index 

field and is placed in any of the N slots of that set
– Call N the associativity
– New hash function: 

(block address) modulo (# sets in the cache)
– Replacement policy applies to every set
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Effect of Associativity on TIO (1/2)

• Here we assume a cache of fixed size (C)

• Offset:  # of bytes in a block (same as before)

• Index:  Instead of pointing to a slot, now 
points to a set, so I = log

2
(C÷K÷N)

‒ Fully associative (1 set):  0 Index bits!

‒ Direct-mapped (N = 1):  max Index bits

‒ Set associative:  somewhere in-between

• Tag:  Remaining identifier bits (T = A – I – O)
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Effect of Associativity on TIO (2/2)

• For a fixed-size cache, each increase by a factor of 
two in associativity doubles the number of blocks 
per set (i.e. the number of slots) and halves the 
number of sets – decreasing the size of the Index 
by 1 bit and increasing the size of the Tag by 1 bit
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Block offsetByte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the word in the block



Example: Eight-Block Cache Configs
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• Total size of $ = 
# sets × 
associativity

• For fixed $ size, 
associativity ↑ 
means # sets ↓ and 
slots per set ↑ 

• With 8 blocks, an 
8-way set 
associative $ is 
same as a fully 
associative $



Block Placement Schemes
• Place memory block 12 in a cache that holds 8 blocks

• Fully associative:  Can go in any of the slots (all 1 set)

• Direct-mapped:  Can only go in slot (12 mod 8) = 4

• 2-way set associative:  Can go in either slot of set 
(12 mod 4) = 0
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SA Cache Example (1/5)

• Cache parameters:
– 2-way set associative, 6-bit addresses, 1-word 

blocks, 4-word cache, write-through

• How many sets?
– C÷K÷N = 4÷1÷2 = 2 sets

• TIO Breakdown:
– O = log

2
(4) = 2, I = log

2
(2) = 1, T = 6 – 1 – 2 = 3
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XXX X XXMemory Addresses:

Block address



SA Cache Example (2/5)

• Cache parameters:
– 2-way set associative, 6-bit addresses, 1-word 

blocks, 4-word cache, write-through
– Offset – 2 bits, Index – 1 bit, Tag – 3 bits

• 37 bits per slot, 37*2 = 74 bits per set,
2*74 = 148 bits to implement
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V Tag 00 01 10 11

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

Index

0

1

0

1

Offset

0

1

LRU

X

LRU

X



SA Cache Example (3/5)
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0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

0

Cache:

Tag DataVSlot

1

0
1

Set

0

1

Main Memory: Each block maps into 
one set (either slot)
(see colors)

On a memory request:
(let’s say 001011

two
)

1) Take Index field (0)

2) For EACH slot in set,
 check valid bit,
 then compare Tag

Set numbers exactly 
match the Index field

Main Memory shown 
in blocks, so offset 
bits not shown (x’s)



SA Cache Example (4/5)
• Consider the sequence of memory address accesses

                                       0     2     4     8     20    16     0     2
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0

4

miss

miss

Starting with a cold cache:

0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

2 hit

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

8 miss
1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0

1

0

1

0

1

0

1

000000 000010

001000000100



SA Cache Example (5/5)
• Consider the sequence of memory address accesses

                                       0     2     4     8     20    16     0     2
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20

0

miss

miss

Starting with a cold cache:

• 8 requests, 6 misses

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]
1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

1 010 M[16] M[17] M[18] M[19]
1 001 M[8] M[9] M[10] M[11]
1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

16 miss

1 010 M[16] M[17] M[18] M[19]
1 000 M[0] M[1] M[2] M[3]
1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

2 hit

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0

1

0

1

0

1

0

1

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]
1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

M    H    M    M
010100 010000

000010000000



Worst Case for Set Associative

• Worst case for DM was repeating pattern of 2 
into same cache slot (HR = 0/n)
– Set associative for N > 1:  HR = (n-2)/n

• Worst case for N-way SA with LRU?
– Repeating pattern of at least N+1 that maps into 

same set

– Back to HR = 0:
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000    M[0-3]

001    M[8-11]

0, 8, 16, 0, 8, 
…M M M

010    M[16-19]

000    M[0-3]

M

001    M[8-11]

M
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Question:  What is the TIO breakdown for the 
following cache?

• 32-bit address space
• 32 KiB 4-way set associative cache
• 8 word blocks

A = 32, C = 32 KiB = 215 B, N = 4, K = 8 words = 32 B

21 8 3(A)
19  8 5(B)
19 10 3(C)
17 10 5(D)

T I O O = log
2
(K) = 5 bits

C/K = 210 slots
C/K/N = 28 sets
I = log

2
(C/K/N) = 8 bits

T = A – I – O = 19 bits



Summary

• Set associativity determines flexibility of block 
placement
– Fully associative:  blocks can go anywhere

– Direct-mapped:  blocks go in one specific location

– N-way:  cache split into sets, each of which have n 
slots to place memory blocks
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