
Direct-Mapped and Set Associative Caches
Instructor: Steven Ho

Great Idea #3: Principle of Locality/
Memory Hierarchy

7/16/2018 CS61C Su18 - Lecture 15 2

Extended Review of Last Lecture

• Why have caches?
– Intermediate level between CPU and memory
– In-between in size, cost, and speed

• Memory (hierarchy, organization, structures)
set up to exploit temporal and spatial locality
– Temporal: If accessed, will access again soon
– Spatial: If accessed, will access others around it

• Caches hold a subset of memory (in blocks)
– We are studying how they are designed for fast

and efficient operation (lookup, access, storage)
7/16/2018 CS61C Su18 - Lecture 15 3

Extended Review of Last Lecture

• Fully Associative Caches:
– Every block can go in any slot

• Use random or LRU replacement policy when cache full

– Memory address breakdown (on request)
• Tag field is unique identifier (which block is currently in

slot)

• Offset field indexes into block (by bytes)

– Each cache slot holds block data, tag, valid bit, and
dirty bit (dirty bit is only for write-back)
• The whole cache maintains LRU bits

7/16/2018 CS61C Su18 - Lecture 15 4

Extended Review of Last Lecture

• On memory access (read or write):
1) Look at ALL cache slots in parallel
2) If Valid bit is 0, then ignore (garbage)
3) If Valid bit is 1 and Tag matches, then use that

data

• On write, set Dirty bit if write-back

7/16/2018 CS61C Su18 - Lecture 15 5

• Fully associative cache layout in our example
– 6-bit address space, 16-byte cache with 4-byte blocks

– How many blocks do we have? C/K = 4 blocks

– LRU replacement (2 bits)

– Offset – 2 bits, Tag – 4 bits

Extended Review of Last Lecture

7/16/2018 CS61C Su18 - Lecture 15 6

Offset

Slot
0
1
2
3

cache size (C) block size (K)26 = 64 B address space

LRU bits

V Tag 00 01 10 11 LRU
X XXXX 0x?? 0x?? 0x?? 0x?? XX
X XXXX 0x?? 0x?? 0x?? 0x?? XX
X XXXX 0x?? 0x?? 0x?? 0x?? XX
X XXXX 0x?? 0x?? 0x?? 0x?? XX

Yesterday’s example was write through and looked like this

FA Cache Examples (3/4)
1) Consider the following addresses being requested:

 0 2 2 0 16 20 8 4

7/16/2018 CS61C Su18 - Lecture 15 7

0

2

miss

hit

Starting with a cold cache:

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

2 hit

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

0 hit

000000 000010

000000000010

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

FA Cache Examples (3/4)
1) Consider the following addresses being requested:

 0 2 2 0 16 20 8 4

7/16/2018 CS61C Su18 - Lecture 15 8

16

8

miss

miss

Starting with a cold cache:

• 8 requests, 5 misses – ordering matters!

1 0000 M[0] M[1] M[2] M[3]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
0 0000 0x?? 0x?? 0x?? 0x??
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
0 0000 0x?? 0x?? 0x?? 0x??

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

20 miss

1 0000 M[0] M[1] M[2] M[3]
1 0100 M[16] M[17] M[18] M[19]
1 0101 M[20] M[21] M[22] M[23]
1 0010 M[8] M[9] M[10] M[11]

4 miss

M H H H
010000 010100

000100001000

FA Cache Examples (4/4)
3) Original sequence, but double block size to 8B

 0 2 4 8 20 16 0 2

7/16/2018 CS61C Su18 - Lecture 15 9

0
miss

Starting with a cold cache:

0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

2

4

hit

hit

8
miss

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

000000

000010

000100

001000

FA Cache Examples (4/4)
3) Original sequence, but double block size

 0 2 4 8 20 16 0 2

7/16/2018 CS61C Su18 - Lecture 15 10

20
miss

Starting with a cold cache:

1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 000 M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]

16

0

hit

miss

1 010 M[16] M[17] M[18] M[19] M[20] M[21] M[22] M[23]
1 001 M[8] M[9] M[10] M[11] M[12] M[13] M[14] M[15]

2
hit

• 8 requests, 4 misses – cache parameters matter!

M H H M
010100

010000

000000

000010

11

Question:
Starting with the same cold cache as the first 3
examples, which of the sequences below will
result in the final state of the cache shown here:

0 2 12 4 16 8 0 6(A)

0 8 4 16 0 12 6 2(B)

6 12 4 8 2 16 0 0(C)

2 8 0 4 6 16 12 0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

LRU
10

0

1

2

3

12

Question:
Starting with the same cold cache as the first 3
examples, which of the sequences below will
result in the final state of the cache shown here:

0 2 12 4 16 8 0 6(A)

0 8 4 16 0 12 6 2(B)

6 12 4 8 2 16 0 0(C)

2 8 0 4 6 16 12 0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

LRU
10

0

1

2

3

13

Question:
Starting with the same cold cache as the first 3
examples, which of the sequences below will
result in the final state of the cache shown here:

0 2 12 4 16 8 0 6(A)

0 8 4 16 0 12 6 2(B)

6 12 4 8 2 16 0 0(C)

2 8 0 4 6 16 12 0(D)

1 0000 M[0] M[1] M[2] M[3]

1 0011 M[12] M[13] M[14] M[15]

1 0001 M[4] M[5] M[6] M[7]

1 0100 M[16] M[17] M[18] M[19]

LRU
10

0

1

2

3

Memory Accesses

• The picture so far:

7/16/2018 CS61C Su18 - Lecture 15 14

Cache
Addr

miss

hit

data

CPU

Main
Memory

Handling Write Hits

• Write hits (D$)
1) Write-Through Policy: Always write data to

cache and to memory (through cache)
• Forces cache and memory to always be consistent

• Slow! (every memory access is long)

• Include a Write Buffer that updates memory in parallel
with processor

7/16/2018 CS61C Su18 - Lecture 15 15

Assume present in all schemes
when writing to memory

Handling Write Hits

• Write hits (D$)
2) Write-Back Policy: Write data only to cache,

then update memory when block is removed
• Allows cache and memory to be inconsistent

• Multiple writes collected in cache; single write to
memory per block

• Dirty bit: Extra bit per cache row that is set if block was
written to (is “dirty”) and needs to be written back

7/16/2018 CS61C Su18 - Lecture 15 16

• Miss penalty grows as block size does

• Read misses (I$ and D$)
– Stall execution, fetch block from memory, put in

cache, send requested data to processor, resume

• Write misses (D$)
– Always have to update block from memory

– We have to make a choice:

• Carry the updated block into cache or not?

Handling Cache Misses

7/16/2018 CS61C Su18 - Lecture 15 17

• Write Allocate policy: when we bring the block
into the cache after a write miss

• No Write Allocate policy: only change main
memory after a write miss
– Write allocate almost always paired with

write-back
• Eg: Accessing same address many times -> cache it

– No write allocate typically paired with
write-through
• Eg: Infrequent/random writes -> don’t bother caching it

Write Allocate

7/16/2018 CS61C Su18 - Lecture 15 18

Updated Cache Picture

• Fully associative, write through
– Same as our simplified examples from before

• Fully associative, write back

• Write miss procedure (write allocate or not)
only affects behavior, not design

7/16/2018 CS61C Su18 - Lecture 15 19

V D Tag 00 01 10 11

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

X X XXXX 0x?? 0x?? 0x?? 0x??

Slot

0

1

2

3

LRU

XX

How do we use this thing?

• Nothing changes from the programmer’s
perspective
– Still just issuing lw and sw instructions

• The rest is handled in hardware:
– Checking the cache

– Extracting the data using the offset

• Why should a programmer care?
– Understanding cache parameters = faster

programs

20

Agenda

7/16/2018 CS61C Su18 - Lecture 15

• Review of yesterday
• Administrativia
• Direct-Mapped Caches

• Set Associative Caches

• Cache Performance

21

Administrivia
• HW3/4 Due today
• HW5 Released, due next Monday (7/23)
• Project 3 Due Friday (7/20)
– Parties tonight @Soda 405/411 and Friday @Woz

(4-6pm for both)
– If you ask for help please diagnose problem spots

• Guerilla Session on Wed. 4-6pm @Soda 405

• Midterm 2 is coming up! Next Wed. in lecture
– Covering up to Performance

– Review Session Sunday 2-4pm @GPB 100

7/16/2018 CS61C Su18 - Lecture 15 22

Direct-Mapped Caches (1/3)

• Each memory block is mapped to exactly one
slot in the cache (direct-mapped)
– Every block has only one “home”

– Use hash function to determine which slot

• Comparison with fully associative
– Check just one slot for a block (faster!)

– No replacement policy necessary

– Access pattern may leave empty slots in cache

7/16/2018 CS61C Su18 - Lecture 15 23

Direct-Mapped Caches (2/3)

• Offset field remains the same as before

• Recall: blocks consist of adjacent bytes
– Do we want adjacent blocks to map to same slot?

– Index field: Apply hash function to block address
to determine which slot the block goes in
• (block address) modulo (# of blocks in the cache)

• Tag field maintains same function (identifier),
but is now shorter

7/16/2018 CS61C Su18 - Lecture 15 24

TIO Address Breakdown

• Memory address fields:

• Meaning of the field sizes:
– O bits ↔ 2O bytes/block = 2O-2 words/block

– I bits ↔ 2I slots in cache = cache size / block size

– T bits = A – I – O, where A = # of address bits
(A = 32 here)

7/16/2018 CS61C Su18 - Lecture 15 25

Tag Index Offset
31 0

T bits I bits O bits

Direct-Mapped Caches (3/3)

• What’s actually in the cache?
– Block of data (8 × K = 8 × 2O bits)

– Tag field of address as identifier (T bits)

– Valid bit (1 bit)

– Dirty bit (1 bit if write-back)

– No replacement management bits!

• Total bits in cache = # slots × (8×K + T + 1 + 1)
 = 2I × (8×2O + T + 1 + 1) bits

7/16/2018 CS61C Su18 - Lecture 15 26

DM Cache Example (1/5)

• Cache parameters:
– Direct-mapped, address space of 64B, block size of

4B, cache size of 16B, write-through

• TIO Breakdown:
– O = log

2
(4) = 2

– Cache size / block size = 16/4 = 4, so I = log
2
(4) = 2

– A = log
2
(64) = 6 bits, so T = 6 – 2 – 2 = 2

• Bits in cache = 22 × (8×22 + 2 + 1) = 140 bits

7/16/2018 CS61C Su18 - Lecture 15 27

XX XX XXMemory Addresses:

Block address

DM Cache Example (2/5)

• Cache parameters:
– Direct-mapped, address space of 64B, block size of

4B, cache size of 16B, write-through
– Offset – 2 bits, Index – 2 bits, Tag – 2 bits

• 35 bits per index/slot, 140 bits to implement

7/16/2018 CS61C Su18 - Lecture 15 28

V Tag 00 01 10 11

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

X XX 0x?? 0x?? 0x?? 0x??

Index

00

01

10

11

Offset

DM Cache Example (3/5)

7/16/2018 CS61C Su18 - Lecture 15 29

Main Memory: Which blocks map to
each row of the cache?
(see colors)

On a memory request:
(let’s say 001011

two
)

1) Take Index field (10)

2) Check if Valid bit is
true in that row of cache

3) If valid, then check if
Tag matches

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

00

01

10

11

Cache:

Tag DataValidIndex

Cache slots exactly
match the Index field

Which blocks map to
each row of the cache?
(see colors)

Main Memory shown
in blocks, so offset
bits not shown (x’s)

DM Cache Example (4/5)
• Consider the sequence of memory address accesses

 0 2 4 8 20 16 0 2

7/16/2018 CS61C Su18 - Lecture 15 30

0

4

miss

miss

Starting with a cold cache:

0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

2 hit

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
0 00 0x?? 0x?? 0x?? 0x??
0 00 0x?? 0x?? 0x?? 0x??

8 miss
1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
1 00 M[8] M[9] M[10] M[11]
0 00 0x?? 0x?? 0x?? 0x??

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

000000 000010

001000000100

DM Cache Example (5/5)
• Consider the sequence of memory address accesses

 0 2 4 8 20 16 0 2

7/16/2018 CS61C Su18 - Lecture 15 31

20

0

miss

miss

Starting with a cold cache:

• 8 requests, 6 misses – last slot was never used!

1 00 M[0] M[1] M[2] M[3]
1 00 M[4] M[5] M[6] M[7]
1 00 M[8] M[9] M[10] M[11]
0 00 0x?? 0x?? 0x?? 0x??

1 00 M[0] M[1] M[2] M[3]
1 01 M[20] M[21] M[22] M[23]
1 00 M[8] M[9] M[10] M[11]
0 00 0x?? 0x?? 0x?? 0x??

1 01 M[16] M[17] M[18] M[19]
1 01 M[20] M[21] M[22] M[23]
1 00 M[8] M[9] M[10] M[11]
0 00 0x?? 0x?? 0x?? 0x??

16 miss

1 00 M[0] M[1] M[2] M[3]
1 01 M[20] M[21] M[22] M[23]
1 00 M[8] M[9] M[10] M[11]
0 00 0x?? 0x?? 0x?? 0x??

2 hit

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

010100 010000

000010000000

Worst-Case for Direct-Mapped
• Cold DM $ that holds four 1-word blocks
• Consider the memory accesses: 0, 16, 0, 16,...

 000000 010000 000000

• HR of 0%
– Ping pong effect: alternating requests that map

into the same cache slot

• Does fully associative have this problem?

7/16/2018 CS61C Su18 - Lecture 15 32

0 16 0Miss Miss Miss
00 M[0-3] 00 M[0-3] 01 M[16-19]

. . .

Comparison So Far

• Fully associative
– Block can go into any slot
– Must check ALL cache slots on request (“slow”)
– TO breakdown (i.e. I = 0 bits)
– “Worst case” still fills cache (more efficient)

• Direct-mapped
– Block goes into one specific slot (set by Index field)
– Only check ONE cache slot on request (“fast”)
– TIO breakdown
– “Worst case” may only use 1 slot (less efficient)

7/16/2018 CS61C Su18 - Lecture 15 33

Meet the Staff

34

Sukrit Suvansh

Favorite Villain The Lannisters
Logisim
[De]Evolution

What would you
protest

Prerequisite
enforcement

CS Design
requirement

What are you
passionate about?

Musicc American football

What you'd want to
be famous for?

Arora's Algorithm Facial Hair

6/27/2018 CS61C Su18 - Lecture 7

Agenda

7/16/2018

• Review of yesterday

• Administrivia
• Direct-Mapped Caches

• Set Associative Caches

• Cache Performance

CS61C Su18 - Lecture 15 35

Set Associative Caches

• Compromise!
– More flexible than DM, more structured than FA

• N-way set-associative: Divide $ into sets, each
of which consists of N slots
– Memory block maps to a set determined by Index

field and is placed in any of the N slots of that set
– Call N the associativity
– New hash function:

(block address) modulo (# sets in the cache)
– Replacement policy applies to every set

7/16/2018 CS61C Su18 - Lecture 15 36

Effect of Associativity on TIO (1/2)

• Here we assume a cache of fixed size (C)

• Offset: # of bytes in a block (same as before)

• Index: Instead of pointing to a slot, now
points to a set, so I = log

2
(C÷K÷N)

‒ Fully associative (1 set): 0 Index bits!

‒ Direct-mapped (N = 1): max Index bits

‒ Set associative: somewhere in-between

• Tag: Remaining identifier bits (T = A – I – O)

7/16/2018 CS61C Su18 - Lecture 15 37

Effect of Associativity on TIO (2/2)

• For a fixed-size cache, each increase by a factor of
two in associativity doubles the number of blocks
per set (i.e. the number of slots) and halves the
number of sets – decreasing the size of the Index
by 1 bit and increasing the size of the Tag by 1 bit

7/16/2018 CS61C Su18 - Lecture 15 38

Block offsetByte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the word in the block

Example: Eight-Block Cache Configs

7/16/2018 CS61C Su18 - Lecture 15 39

• Total size of $ =
sets ×
associativity

• For fixed $ size,
associativity ↑
means # sets ↓ and
slots per set ↑

• With 8 blocks, an
8-way set
associative $ is
same as a fully
associative $

Block Placement Schemes
• Place memory block 12 in a cache that holds 8 blocks

• Fully associative: Can go in any of the slots (all 1 set)

• Direct-mapped: Can only go in slot (12 mod 8) = 4

• 2-way set associative: Can go in either slot of set
(12 mod 4) = 0

7/16/2018 CS61C Su18 - Lecture 15 40

SA Cache Example (1/5)

• Cache parameters:
– 2-way set associative, 6-bit addresses, 1-word

blocks, 4-word cache, write-through

• How many sets?
– C÷K÷N = 4÷1÷2 = 2 sets

• TIO Breakdown:
– O = log

2
(4) = 2, I = log

2
(2) = 1, T = 6 – 1 – 2 = 3

7/16/2018 CS61C Su18 - Lecture 15 41

XXX X XXMemory Addresses:

Block address

SA Cache Example (2/5)

• Cache parameters:
– 2-way set associative, 6-bit addresses, 1-word

blocks, 4-word cache, write-through
– Offset – 2 bits, Index – 1 bit, Tag – 3 bits

• 37 bits per slot, 37*2 = 74 bits per set,
2*74 = 148 bits to implement

7/16/2018 CS61C Su18 - Lecture 15 42

V Tag 00 01 10 11

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

X XXX 0x?? 0x?? 0x?? 0x??

Index

0

1

0

1

Offset

0

1

LRU

X

LRU

X

SA Cache Example (3/5)

7/16/2018 CS61C Su18 - Lecture 15 43

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

0

Cache:

Tag DataVSlot

1

0
1

Set

0

1

Main Memory: Each block maps into
one set (either slot)
(see colors)

On a memory request:
(let’s say 001011

two
)

1) Take Index field (0)

2) For EACH slot in set,
 check valid bit,
 then compare Tag

Set numbers exactly
match the Index field

Main Memory shown
in blocks, so offset
bits not shown (x’s)

SA Cache Example (4/5)
• Consider the sequence of memory address accesses

 0 2 4 8 20 16 0 2

7/16/2018 CS61C Su18 - Lecture 15 44

0

4

miss

miss

Starting with a cold cache:

0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??
0 000 0x?? 0x?? 0x?? 0x??

2 hit

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
0 000 0x?? 0x?? 0x?? 0x??
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

8 miss
1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0

1

0

1

0

1

0

1

000000 000010

001000000100

SA Cache Example (5/5)
• Consider the sequence of memory address accesses

 0 2 4 8 20 16 0 2

7/16/2018 CS61C Su18 - Lecture 15 45

20

0

miss

miss

Starting with a cold cache:

• 8 requests, 6 misses

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]
1 000 M[4] M[5] M[6] M[7]
0 000 0x?? 0x?? 0x?? 0x??

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]
1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

1 010 M[16] M[17] M[18] M[19]
1 001 M[8] M[9] M[10] M[11]
1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

16 miss

1 010 M[16] M[17] M[18] M[19]
1 000 M[0] M[1] M[2] M[3]
1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

2 hit

0
1
0
1

0
1
0
1

0
1
0
1

0
1
0
1

0

1

0

1

0

1

0

1

1 000 M[0] M[1] M[2] M[3]
1 001 M[8] M[9] M[10] M[11]
1 000 M[4] M[5] M[6] M[7]
1 010 M[20] M[21] M[22] M[23]

M H M M
010100 010000

000010000000

Worst Case for Set Associative

• Worst case for DM was repeating pattern of 2
into same cache slot (HR = 0/n)
– Set associative for N > 1: HR = (n-2)/n

• Worst case for N-way SA with LRU?
– Repeating pattern of at least N+1 that maps into

same set

– Back to HR = 0:

7/16/2018 CS61C Su18 - Lecture 15 46

000 M[0-3]

001 M[8-11]

0, 8, 16, 0, 8,
…M M M

010 M[16-19]

000 M[0-3]

M

001 M[8-11]

M

47

Question: What is the TIO breakdown for the
following cache?

• 32-bit address space
• 32 KiB 4-way set associative cache
• 8 word blocks

A = 32, C = 32 KiB = 215 B, N = 4, K = 8 words = 32 B

21 8 3(A)
19 8 5(B)
19 10 3(C)
17 10 5(D)

T I O O = log
2
(K) = 5 bits

C/K = 210 slots
C/K/N = 28 sets
I = log

2
(C/K/N) = 8 bits

T = A – I – O = 19 bits

Summary

• Set associativity determines flexibility of block
placement
– Fully associative: blocks can go anywhere

– Direct-mapped: blocks go in one specific location

– N-way: cache split into sets, each of which have n
slots to place memory blocks

7/16/2018 CS61C Su18 - Lecture 15 48

