cs Ik Great Ideas
E in Computer
" Architecture

Direct-Mapped and Set Associative Caches
Instructor: Steven Ho

Great Idea #3: Principle of Locality/
Memory Hierarchy

Processor SUPER FAST
SUPER EXPENSIVE

TINY CAPACITY

\ FASTER
LEVEL 1 (L1) CACHE EXPENSIVE
S— ' SMALL CAPACITY

CPU CACHE

EDO, SD-RAM, DDR-SDRAM, RD-RAM PHYSICAL MEMORY FAST
PRICED REASONABLY
and More... AVERAGE CAPACITY

SSD, Flash Drive SOLID STATE MEMORY A AVERAGE SPEED

PRICED REASONABLY
AVERAGE CAPACITY

E FLASH SED MEMOR!

SLOW
CHEAP
LARGE CAPACTITY

Mechanical Hard Drives

Extended Review of Last Lecture

* Why have caches?
— Intermediate level between CPU and memory
— In-between in size, cost, and speed

 Memory (hierarchy, organization, structures)
set up to exploit temporal and spatial locality
— Temporal: If accessed, will access again soon
— Spatial: If accessed, will access others around it

e Caches hold a subset of memory (in blocks)

— We are studying how they are designed for fast
and efficient operation (lookup, access, storage)

7/16/2018 CS61C Sul8 - Lecture 15

Extended Review of Last Lecture

* Fully Associative Caches:

— Every block can go in any slot
* Use random or LRU replacement policy when cache full

— Memory address breakdown (on request)

field is unique identifier (which block is currently in
slot)

* Offset field indexes into block (by bytes)

— Each cache slot holds block data, tag, valid bit, and
dirty bit (dirty bit is only for write-back)
* The whole cache maintains LRU bits

7/16/2018 CS61C Sul8 - Lecture 15 4

Extended Review of Last Lecture

* On memory access (read or write):
1) Look at ALL cache slots in parallel
2) If Valid bit is O, then ignore (garbage)

3) If Valid bitis 1 and matches, then use that
data

* On write, set Dirty bit if write-back

7/16/2018 CS61C Sul8 - Lecture 15

Extended Review of Last Lecture

2% = 64 B address space cache size (C) block size (K)

. Fullylassociative cachellayout in our ex%mple
— 6-bit address space, 16-byte cache with 4-byte blocks
— How many blocks do we have? C/K = 4 blocks

— LRU replacement (2 bits)
— Offset — 2 bits, — 4% LRU bits

Offset
V[Tag | | [| [LRU|
0 X Ox?? Ox?? Ox?? Ox??
Slot 1 X Ox?? Ox?? Ox?? Ox?? XX
2 X Ox?? Ox?? Ox?? Ox?? XX
3 X Ox?? Ox?? Ox?? Ox?? XX

Yesterday’s example was write through and looked like this

7/16/2018 CS61C Sul8 - Lecture 15

FA Cache Examples (3/4)

1) Consider the following addresses being requested:

Starting with a cold cache: 0O 2 2 0 16 20 8 4
00 10
0 miss 2 hit
P
1 MI[0] | M[1] | M[2] | M[3] 1 MI[0] | M[1] {M[21)} MI[3]
0[{0000| Ox?? | Ox?? | Ox?? | Ox?? 0[{0000| Ox?? | Ox?? | Ox?? | Ox??
0[{0000| Ox?? | Ox?? | Ox?? | Ox?? 0[{0000| Ox?? | Ox?? | Ox?? | Ox??
0[{0000| Ox?? | Ox?? | Ox?? | Ox?? 0[{0000| Ox?? | Ox?? | Ox?? | Ox??
10 00
2 hit 0 hit
1]0000] M[o] [M[1] (M2 Mi3] 1]0000{MI0]Y M[1] [MI2] | M[3]
0{0000| Ox?? | 0x?? | Ox?? | Ox?? 0(0000| 0x?? | Ox?? | Ox?? | Ox??
0[{0000| Ox?? | Ox?? | Ox?? | Ox?? 0[{0000| Ox?? | Ox?? | Ox?? | Ox??
0[{0000| Ox?? | Ox?? | Ox?? | Ox?? 0[{0000| Ox?? | Ox?? | Ox?? | Ox??

7/16/2018

CS61C Sul8 - Lecture 15

FA Cache Examples (3/4)

1) Consider the following addresses being requested:

Starting with a cold cache:

00
16 miss

I\(}Ial_?[H162084
00

20 miss

1{0000

MI[O]

M[1]

M[2]

M[3]

M[16]

M[17]

M[18]

M[19]

0000

MI[O]

M[1]

M[2]

M[3]

Ox??

Ox??

Ox??

Ox??

0100

M[16]

M[17]

M[18]

M[19]

1
0/0000
0/0000

Ox??

Ox??

Ox??

Ox??

M[20]

M[21]

M[22]

M[23]

00
8 missS

0000

Ox??

Ox??

Ox??

Ox??

0000

M(O]

M[1]

M(2]

M(3]

00

0100

M[16]

M[17]

M[18]

M[19]

M

Mz

MEsT

1
1
1/0101
1

M[20]

M[21]

M[22]

M[23]

0100

M[16]

M[17]

M[18]

M[19]

M[8]

M[9]

M[10]

M[11]

0101

M[20]

M[21]

M[22]

M[23]

- 8 requests, 5 misses —oro

7/16/2018

0010

M[8]

M[9]

M[10]

M[11]

CS61C Sul8 - Lecture 15

ering matters!

FA Cache Examples (4/4)

3) Original sequence, but double block size to 8B
Starting with a cold cache: O 2 4 8 20 16 0 2

000 —_
0 |1 (M[0D| M[1] | M[2] [M[3] | M[4] | M[5] | M[6] | M[7]
MISS |0] 000 | 0x?? | Ox?? | Ox?? | Ox?? | Ox?? | Ox?? | Ox?? | Ox??

010 —_

2 |1 MI[0] | M[1] (M[2]D)] M[3] | M[4] | M[5] | M[6] | M[7]
hit |0 000 | 0x?? | Ox?? | Ox?? | Ox?? | Ox?? | OX?? | Ox?? | Ox??
100

4 |1 MI[O0] | M[1] | M[2] | M[3] (I\/I—Tél], M[5] | M[6] | M[7]
hit |0] 000 | 0x?? | Ox?? | Ox?? | Ox?? | Ox?? | Ox?? | Ox?? | Ox??
000
8 (1] 000 MIO] | M[1] | M[2] | M[3] | M[4] | M[5] | M[6] | M[7]
miss |1 (M[Si) M[9] IM[10]({M[11]|M[12]({M[13]|M[14]|M[15]

7/16/2018 CS61C Sul8 - Lecture 15

3) Original sequence, but double block size

FA Cache Examples (4/4)

Starting with a cold cache:

100
20

miss
000
16
hit
000
0
miss
010

2
hit

. 8 requests, 4 misses — cache parameters matter!

7/16/2018

I\C}Ia|_4||\8/|201602

1

| 060~

O]

M

Miz]

i3]

]

MtsT

e

ME7T

1

001

M[8]

M[9]

M[10]

M[11]

M[12]

M[13]

M[14]

M[15]

faiie)

M[17]

M[18]

M[19]

M[20]

M[21]

M[22]

M[23]

001

M(8]

M(9]

M[10]

M[11]

M[12]

M[13]

M[14]

M[15]

010

M[16]

M[17]

M[18]

M[19]

M[20]

M[21]

M[22]

M[23]

00T | Mig]

MeT

MHA0]

MEAT]

M12]

MHE3]

MEAE]

MHAS]

010

M[16]

M[17]

MLL8]

M[19]

M[20]

M[21]

M[22]

M[23]

M[O]

M[1]

T

M[3]

M(4]

M[5]

M[6]

M[7]

CS61C Sul8 - Lecture 15

(al

Question:

Starting with the same cold cache as the first 3
examples, which of the sequences below will
result in the final state of the cache shown here:

0 [1]0000 | M[O] | M[1] | M[2] | M[3]
1 |1|0011|M[12] | M[13] | M[14] | M[15] LRU
2 [1]0001 | M[4] | M[5] | M[6] | M[7] 10
3 [1]0100 | M[16] | M[17] | M[18] | M[19]
(A)
) 0 8 4 16 0 12 6 2
(C)

(D)

11

Question:

Starting with the same cold cache as the first 3
examples, which of the sequences below will
result in the final state of the cache shown here:

0 |1(/0000| M[O] | M[1] | M[2] | M[3]
1 (1|0011 |M[12] | M[13]|M[14] | M[15] LRU
2 |1]0001| M[4] | M[5] | M[6] | M[7] 10
3 |1]|0100 | M[16] | M[17] | M[18] | M[19]
A)
B)60—8—4—16—012 [6412

1~)

\“J

(D)

|

12

Question:

Starting with the same cold cache as the first 3
examples, which of the sequences below will
result in the final state of the cache shown here:

(A)

(B) O

(C)

w N = O

10000 | M[O] | M[1] | M[2] | M[3]

1|0011 | M[12] | M[13] | M[14] | M[15] LRU
1|0001 | M[4] | M[5] | M[6] | M[7] 10
1|0100 | M[16] | M[17] | M[18] | M[19]

8 4 16 0 12 6 2

| (D)

13

Memory Accesses

* The picture so far:

-

CPU
ddr » Cache

miIss l T data

Main
Memory

hit

7/16/2018 CS61C Sul8 - Lecture 15

Handling Write Hits

* Write hits (DS)

1) Write-Through Policy: Always write data to
cache and to memory (through cache)
* Forces cache and memory to always be consistent
* Slow! (every memory access is long)

* Include a Write Buffer that updates memory in parallel

with processor
Assume present in all schemes

when writing to memory

7/16/2018 CS61C Sul8 - Lecture 15 15

Handling Write Hits

* Write hits (DS)

2) Write-Back Policy: Write data only to cache,
then update memory when block is removed
* Allows cache and memory to be inconsistent

* Multiple writes collected in cache; single write to
memory per block

* Dirty bit: Extra bit per cache row that is set if block was
written to (is “dirty”) and needs to be written back

7/16/2018 CS61C Sul8 - Lecture 15 16

Handling Cache Misses

* Miss penalty grows as block size does

* Read misses (IS and DS)

— Stall execution, fetch block from memory, put in
cache, send requested data to processor, resume

* Write misses (DS)
— Always have to update block from memory
— We have to make a choice:
* Carry the updated block into cache or not?

7/16/2018 CS61C Sul8 - Lecture 15

17

Write Allocate

* Write Allocate policy: when we bring the block
into the cache after a write miss

* No Write Allocate policy: only change main
memory after a write miss
— Write allocate almost always paired with
write-back
* Eg: Accessing same address many times -> cache it
— No write allocate typically paired with
write-through

* Eg: Infrequent/random writes -> don’t bother caching it

7/16/2018 CS61C Sul8 - Lecture 15 18

Updated Cache Picture

* Fully associative, write through
— Same as our simplified examples from before

* Fully associative, write back

0 Ox?? Ox?? Ox?? Ox??
Slot 1 X Ox?? Ox?? Ox?? Ox?? m
2 X Ox?? Ox?? Ox?? Ox?? XX
3 X Ox?? Ox?? Ox?? Ox??

* Write miss procedure (write allocate or not)
only affects behavior, not design

7/16/2018 CS61C Sul8 - Lecture 15

How do we use this thing?

* Nothing changes from the programmer’s
perspective
— Still just issuing 1w and sw instructions
* The rest is handled in hardware:
— Checking the cache
— Extracting the data using the offset
* Why should a programmer care?

— Understanding cache parameters = faster
programs

20

Agenda

* Review of yesterday
* Administrativia
* Direct-Mapped Caches

* Set Associative Caches
e Cache Performance

7/16/2018 CS61C Sul8 - Lecture 15

21

Administrivia
* HW3/4 Due today

* HW5 Released, due next Monday (7/23)

* Project 3 Due Friday (7/20)

— Parties tonight @Soda 405/411 and Friday @Woz
(4-6pm for both)

— If you ask for help please diagnose problem spots

* Guerilla Session on Wed. 4-6pm @Soda 405
 Midterm 2 is coming up! Next Wed. in lecture

— Covering up to Performance
— Review Session Sunday 2-4pm @GPB 100

Direct-Mapped Caches (1/3)

 Each memory block is mapped to exactly one
slot in the cache (direct-mapped)

— Every block has only one “home”

— Use hash function to determine which slot
 Comparison with fully associative

— Check just one slot for a block (faster!)

— No replacement policy necessary

— Access pattern may leave empty slots in cache

7/16/2018 CS61C Sul8 - Lecture 15 23

Direct-Mapped Caches (2/3)

* Offset field remains the same as before

* Recall: blocks consist of adjacent bytes
— Do we want adjacent blocks to map to same slot?

— Index field: Apply hash function to block address
to determine which slot the block goes in
* (block address) modulo (# of blocks in the cache)

maintains same function (identifier),
but is now shorter

7/16/2018 CS61C Sul8 - Lecture 15 24

TIO Address Breakdown

* Memory address fields:
31

0
| | Index | Offset |
I\

\)\ l
| 1 |

bits | bits O bits

* Meaning of the field sizes:
— O bits - 29 bytes/block = 2°°2 words/block
— | bits o 2'slots in cache = cache size / block size

bits=A—1—-0, where A = # of address bits
(A =32 here)

7/16/2018 CS61C Sul8 - Lecture 15

Direct-Mapped Caches (3/3)

 What’s actually in the cache?
— Block of data (8 x K = 8 x 27 bits)
field of address as identifier (T bits)
— Valid bit (1 bit)
bit (1 bit if write-back)
— No replacement management bits!
e Total bits in cache = # slots x (8xK+ T+ 1 + 1)
=2'x (8x2° + T + 1 + 1) bits

7/16/2018 CS61C Sul8 - Lecture 15 26

DM Cache Example (1/5)

* Cache parameters:

— Direct-mapped, address space of 64B, block size of
4B, cache size of 16B, write-through

* TIO Breakdown: Memory Addresses: |0 XX XX]
— 0= |og2(4) =2 Block address
— Cache size / block size = 16/4 = 4, so | = log (4) = 2

— A=log,(64)=6Dbits,s0 T=6-2-2=

* Bits in cache = 27 x (8x2? + 2 + 1) = 140 bits

7/16/2018 CS61C Sul8 - Lecture 15 27

DM Cache Example (2/5)

* Cache parameters:

— Direct-mapped, address space of 64B, block size of
4B, cache size of 16B, write-through

— Offset — 2 bits, Index — 2 bits, — 2 bits
Offset
I----

00 Ox?? Ox?? Ox?? O0Ox??

?? ?? ?? ??

Index 01 X Ox? Ox? Ox? Ox?

10 X Ox?? Ox?? Ox?? 0Ox??

11 X Ox?? Ox?? Ox?? 0Ox??

* 35 bits per index/slot, 140 bits to implement

7/16/2018 CS61C Sul8 - Lecture 15 28

DM Cache Example (3/5)

Main Memory: 00xx Which blocks map to
Cache: OIxx each row of the cache?
Index Valid Data H0xx (see colors)
11xx
00 00xx On a memory request:
01 | _ Olxx (let’s say 1011)
10 |(JICT] 10xX
11 11xx 1) Take Index field (10)
A 00xX SR
2) Check if Valid bit is
Cache slots exactl I -
ache slots exactly 0y truein that row of cache
match the Index field
Lixx 3) If valid, then check if
00xx matches
Main Memory shown 01xx
in blocks, so offset 1 Oxx
bits not shown (x’s) |=—>» 11xx

7/16/2018 CS61C Sul8 - Lecture 15 29

DM Cache Example (4/5)

e Consider the sequence of memory address accesses

Starting with a cold cache:

0000

0 miss

00 (1

kNHOi,

01

00

Ox??

O 2 4 8 20 16 0 2

M[1]

M[2]

M[3]

Ox??

Ox??

Ox??

00

Ox??

Ox??

Ox??

Ox??

0
10 |0
1110

00

Ox??

Ox??

Ox??

Ox??

0100
4 miss

00

00

MIO

01

10

00

M[1]

M(2]

M(3]

M[4
Ox??

M[5]

M[6]

M[7]

Ox??

Ox??

Ox??

OO0k |F

11

00

Ox??

Ox??

Ox??

Ox??

7/16/2018

00
01
10
11

00
01
10
11

0010

2 hit

1

MI[O]

M[1]

M[3]

00 | Ox??

Ox??

khﬂ[ZiN

Ox??

Ox??

00 | Ox??

Ox??

Ox??

Ox??

0
0
0

00 | Ox??

Ox??

Ox??

Ox??

1000

8 miss

00 | M[O]

M[1]

M(2]

M(3]

00 | M[4]

M[8

Ol |[~|[r

00 | Ox??

M[5]

M[6]

M[7]

M[9]

M[10]

M[11]

Ox??

Ox??

Ox??

CS61C Sul8 - Lecture 15

30

00
01
10
11

00
01
10
11

DM Cache Example (5/5)

e Consider the sequence of memory address accesses

Starting with a cold cache:

0100
20 miss

O 2 4 8 20 16 0 2

0000
16 miss

1

00

MI[O]

M[1]

M[2]

M[3]

| 00~

A

00

M[8]

M[9]

M[10]

M[11]

===

00

Ox??

Ox??

Ox??

Ox??

0000
0 miss

o1

MH6]

Mf17]

M8

M9

01

M[20]

M[21]

M[22]

M[23]

O|lRr|[~|r

00

M[8]

M[9]

M[10]

M[11]

00

Ox??

Ox??

Ox??

Ox??

00
01
10
11

00
01
10
11

1

|00~

Il

Y el

2]

3T

01

M[20]

M[21]

M[22]

M[23]

00

M[8]

M[9]

M[10]

M[11]

Ol |r-

00

Ox??

Ox??

Ox??

Ox??

0010

hit

M(O]

M[1]

By

M(3]

01

M[20]

M[21]

M[22]

M[23]

SIENEER

00

M[8]

M[9]

M[10]

M[11]

00

Ox??

Ox??

Ox??

Ox??

- 8 requests, 6 misses — last slot was never used!

7/16/2018

CS61C Sul8 - Lecture 15

Worst-Case for Direct-Mapped
* Cold DM S that holds four 1-word blocks

* Consider the memory accesses: 0, 16, 0, 16,...

0000
0 Miss

00

M[0-3]

0000
16 Miss

A

MIt6-3]

0000

AN

7/16/2018

CS61C Sul8 - Lecture 15

32

Comparison So Far

* Fully associative
— Block can go into any slot
— Must check ALL cache slots on request (“slow”)
— 1O breakdown (i.e. | = 0 bits)
— “Worst case” still fills cache (more efficient)
* Direct-mapped
— Block goes into one specific slot (set by Index field)
— Only check ONE cache slot on request (“fast”)

— T10 breakdown
— “Worst case” may only use 1 slot (less efficient)

7/16/2018 CS61C Sul8 - Lecture 15 33

Meet the Staff

Sukrit ’ F\\

Favorite Villain

What would you
protest

What are you
passionate about?

What you'd want to
be famous for?

6/27/2018

The Lannisters

Prerequisite
enforcement

Musicc

Arora's Algorithm

CS61C Sul8 - Lecture 7

Logisim
[De]Evolution

CS Design
requirement

American football

Facial Hair

34

Agenda

* Review of yesterday

* Administrivia

* Direct-Mapped Caches
* Set Associative Caches

 Cache Performance

7/16/2018 CS61C Sul8 - Lecture 15

35

Set Associative Caches

* Compromise!
— More flexible than DM, more structured than FA

* N-way set-associative: Divide S into sets, each
of which consists of N slots

— Memory block maps to a set determined by Index
field and is placed in any of the N slots of that set

— Call N the associativity

— New hash function:
(block address) modulo (# sets in the cache)

— Replacement policy applies to every set

7/16/2018 CS61C Sul8 - Lecture 15 36

Effect of Associativity on TIO (1/2)

 Here we assume a cache of fixed size (C)
e Offset: # of bytes in a block (same as before)

* Index: Instead of pointing to a slot, now
points to a set, so | = log_(C+K+N)
— Fully associative (1 set): 0 Index bits!
— Direct-mapped (N =1): max Index bits
— Set associative: somewhere in-between

* Tag: Remaining identifier bits (1 =A—-1-0)

7/16/2018 CS61C Sul8 - Lecture 15 37

Effect of Associativity on TIO (2/2)

* For a fixed-size cache, each increase by a factor of
two in associativity doubles the number of blocks
per set (i.e. the number of slots) and halves the
number of sets — decreasing the size of the Index
by 1 bit and increasing the size of the

Used for tag comparison

T

Selects the set

T

T

by 1 bit

Selects the word in the block

Index

Block offset

Byte

— Increasing associativity

Decreasing associativity «——

Direct mapped
(only one way)

7/16/2018 CS61C Sul8 - Lecture 15

| Fully associative

| (only one set)

offset

38

Example: Eight-Block Cache Configs

* Total size of S =

One-way set associative # S e tS X

(direct mapped) . o
Block Tag Data associativity

0 - . .

1 Two-way set associative °® For flxed S SIZE,

> Set Tag Data Tag Data . « A

X 0 aSSOCIatIVIty

. : means # sets | and
5 A

; 3 slots per set

! * With 8 blocks, an

Four-way set associative 8_Way S Et

Set Tag Data Tag Data Tag Data Tag Data . . .

: associative S is

1 same as a fully

Eight-way set associative (fully associative) dSSOC i a t | ve S

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

7/16/2018 CS61C Sul8 - Lecture 15 39

Block Placement Schemes

* Place memory block 12 in a cache that holds 8 blocks

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
T Ta Ta
A9 2 I 2 . 2
Search T Search T " Search T T T T } T T T

* Fully associative: Can go in any of the slots (all 1 set)
* Direct-mapped: Can only go in slot (12 mod 8) =4

* 2-way set associative: Can go in either slot of set
(12 mod 4)=0

7/16/2018 CS61C Sul8 - Lecture 15

SA Cache Example (1/5)

* Cache parameters:

— 2-way set associative, 6-bit addresses, 1-word
blocks, 4-word cache, write-through

* How many sets?
— C+K+N =4+1+2 = 2 sets

* TIO Breakdown:
—0O=log,(4)=2,1=log,(2)=1,T=6-1-2=3

Memory Addresses: | IXIXX]

\
Block address

7/16/2018 CS61C Sul8 - Lecture 15 41

SA Cache Example (2/5)

* Cache parameters:

— 2-way set associative, 6-bit addresses, 1-word
blocks, 4-word cache, write-through

— Offset — 2 bits, Index — 1 bit, — 3 bits
Offset
@l oo o1 100 11 |

0 0 X Ox?? Ox?? Ox?? 0Ox??

1 X Ox?? Ox?? Ox?? O0Ox??

Index ——

0X Ox?? Ox?? Ox?? 0x??
1

1 X Ox?? Ox?? Ox?? 0Ox??

e 37 bits per slot, 37*2 = 74 bits per set,

2*74 = 148 bits to implement

7/16/2018

CS61C Sul8 - Lecture 15

42

SA Cache Example (3/5)

Main Memory:

Cache:
Set Slot V Data

0 Ogl—l

1
0
1

1

A

Set numbers exactly
match the Index field

Main Memory shown
in blocks, so offset
bits not shown (x’s)

7/16/2018

DXX

Ixx

DXX

Ixx

DXX

Ixx

DXX

Ixx

DXX

Ixx

DXX

Ixx

DXX

Ixx

DXX

—

CS61C Sul8 - Lecture 15

Ixx

Each block maps into
one set (either slot)
(see colors)

On a memory request:
(let’s say 011)

1) Take Index field (0)

2) For EACH slot in set,
check valid bit,
then compare

43

SA Cache Example (4/5)

e Consider the sequence of memory address accesses
Starting with a cold cache: O 2 4 8 20 16 0 2

000 010
0 miss 2 hit
01 ((M[o]) M[1] | M[2] | M[3] 01 M[0] | M[1] [((M[2]) M[3]
0 0
1(0[000 | Ox?? | Ox?? | Ox?? | Ox?? 1[0 000 | Ox?? | Ox?? | Ox?? | Ox??
1 0|0 000 | Ox?? | Ox?? | Ox?? | Ox?? 1 O[Ol 000 | Ox?? | Ox?? | Ox?? | Ox??
1(0[000 | Ox?? | Ox?? | Ox?? | Ox?? 1[0 000 | Ox?? | Ox?? | Ox?? | Ox??
100 000
4 miss 8 Miss
Oo 1| 000 | M[0] | M[1] | M[2] | M[3] Oo 1{ 000 | M[O] | M[1] | M[2] | M[3]
1 (0] 000 | 0x?? | Ox?? | Ox?? | Ox?? 1)1 (M[8]D[M[9] [M[10]{M[11]
1o 1 I(M[4]>| M[5] | M[6] | M[7] 1o 1| 000 | M[4] | M[5] | M[6] | M[7]
1 (0 000 | Ox?? | Ox?? | Ox?? | Ox?? 1 (0 000 | Ox?? | Ox?? | Ox?? | Ox??

7/16/2018 CS61C Sul8 - Lecture 15

SA Cache Example (5/5)

e Consider the sequence of memory address accesses

Starting with a cold cache: 0 4 20 16 0 2
N
100 0
20 miss 16 miss
, 0[1[.000 | M[0] | M[1] | M[2] | M[3] | O [1L.060 | MEOT | MHIT | MiaT | M{ST
1(1] 001 | M[8] | M[9] [M[10]|M[11] 1(1] 001 | M[8] | M[9] [M[10]|M[11]
. 0]1] 000 | MI4] | M[5] | M[6] | M[7] . 0[1] 000 | M[4] | M[5] | M[6] | M[7]
11 Q[zo)mm] M[22]|M[23] 1 (1] 010 [M[20]|M[21]{M[22]|M[23]
000 010
0 miss 2 hit
o 0[1] 010 |M[16]|M[17]|M[18]|M[19]| 0 [1| 010 |M[16]|M[17]|ML18] M[19]
1 1] 00T | waf8T [wfeT [METO]|MEtT]| 11 M[0] [M[1] [M[2D| M[3]
. 0111000 | M[4] | M[5] | M[6] | M[7] . 0[1] 000 | M[4] | M[5] | M[6] | M[7]
1 (1] 010 [M[20]|M[21]{M[22]|M[23] 1 (1] 010 [M[20]|M[21]{M[22]|M[23]

7/16/2018

- 8 requests, 6 misses

CS61C Sul8 - Lecture 15

Worst Case for Set Associative

* Worst case for DM was repeating pattern of 2
into same cache slot (HR = 0/n)

— Set associative for N> 1: HR =(n-2)/n

* Worst case for N-way SA with LRU?
— Repeating pattern of at least N+1 that maps into

same set 0,8, 16,0, 8,
— Back to HR =0: VIV VMM
0aa | M[8&219]

00Q | M[B-2]]

7/16/2018 CS61C Sul8 - Lecture 15 46

Question: What is the TIO breakdown for the
following cache?

32-bit address space
32 KiB 4-way set associative cache
8 word blocks

A=32 C=32KiB=2"B,N=4,K=8 words=32B
T | 0 O = log,(K) = 5 bits
(A) C/K = 2% slots
(B) 19 8 5 || C/K/N=28sets
(C) | = log,(C/K/N) = 8 bits
(D) T=A-1-0 =19 bits

47

Summary

* Set associativity determines flexibility of block
placement
— Fully associative: blocks can go anywhere
— Direct-mapped: blocks go in one specific location

— N-way: cache split into sets, each of which have n
slots to place memory blocks

7/16/2018 CS61C Sul8 - Lecture 15 48

