DLP, Amdahl’s Law, Intro to Multi-thread/processor systems

Instructor: Nick Riasanovsky
Review of Last Lecture

• Performance measured in latency or bandwidth

• Latency measurement for a program:
 – CPU Time = Instructions × CPI × Clock Cycle Time

• Flynn Taxonomy of Parallel Architectures
 – SIMD: Single Instruction Multiple Data
 – MIMD: Multiple Instruction Multiple Data
 – SISD: Single Instruction Single Data
 – MISD: Multiple Instruction Single Data (unused)

• Intel SSE SIMD Instructions
 – One instruction fetch that operates on multiple operands simultaneously
 – 128 bit XMM registers
SSE/SSE2 Floating Point Instructions

<table>
<thead>
<tr>
<th>Data transfer</th>
<th>Arithmetic</th>
<th>Compare</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV{A/U}{SS/PS/SD/PD} xmm, mem/xmm</td>
<td>ADD{SS/PS/SD/PD} xmm, mem/xmm</td>
<td>CMP{SS/PS/SD/PD}</td>
</tr>
<tr>
<td></td>
<td>SUB{SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td>MOV {H/L} {PS/PD} xmm, mem/xmm</td>
<td>MUL{SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIV{SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SQRT{SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAX {SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIN{SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
</tbody>
</table>

{SS} Scalar Single precision FP: 1 32-bit operand in a 128-bit register
{PS} Packed Single precision FP: 4 32-bit operands in a 128-bit register
{SD} Scalar Double precision FP: 1 64-bit operand in a 128-bit register
{PD} Packed Double precision FP, or 2 64-bit operands in a 128-bit register
SSE/SSE2 Floating Point Instructions

<table>
<thead>
<tr>
<th>Data transfer</th>
<th>Arithmetic</th>
<th>Compare</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV {A/U} {SS/PS/SD/PD} xmm, mem/xmm</td>
<td>ADD {SS/PS/SD/PD} xmm, mem/xmm</td>
<td>CMP {SS/PS/SD/PD}</td>
</tr>
<tr>
<td></td>
<td>SUB {SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td>MOV {H/L} {PS/PD} xmm, mem/xmm</td>
<td>MUL {SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIV {SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SQRT {SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAX {SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIN {SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
</tbody>
</table>

xmm: one operand is a 128-bit SSE2 register
mem/xmm: other operand is in memory or an SSE2 register

- **{A}**: 128-bit operand is aligned in memory
- **{U}**: means the 128-bit operand is unaligned in memory
- **{H}**: means move the high half of the 128-bit operand
- **{L}**: means move the low half of the 128-bit operand
Example: Add Single Precision FP Vectors

Computation to be performed:

\[
\begin{align*}
\text{vec} _ \text{res}.x &= v1.x + v2.x; \\
\text{vec} _ \text{res}.y &= v1.y + v2.y; \\
\text{vec} _ \text{res}.z &= v1.z + v2.z; \\
\text{vec} _ \text{res}.w &= v1.w + v2.w;
\end{align*}
\]

SSE Instruction Sequence:

\[
\begin{align*}
\text{movaps} & \quad \text{address-of-v1, } \%\text{xmm0} \\
& \quad \text{v1.w} \mid \text{v1.z} \mid \text{v1.y} \mid \text{v1.x} \rightarrow \text{ xmm0} \\
\text{addps} & \quad \text{address-of-v2, } \%\text{xmm0} \\
& \quad \text{v1.w+v2.w} \mid \text{v1.z+v2.z} \mid \text{v1.y+v2.y} \mid \text{v1.x+v2.x} \\
& \quad \rightarrow \text{ xmm0} \\
\text{movaps} & \quad \%\text{xmm0}, \text{address-of-vec_res}
\end{align*}
\]

move from mem to XMM register, memory aligned, packed single precision

add from mem to XMM register, packed single precision

move from XMM register to mem, memory aligned, packed single precision
Packed and Scalar Double-Precision Floating-Point Operations

Packed Double (PD)

Scalar Double (SD)
Example: Image Converter (1/5)

• Converts BMP (bitmap) image to a YUV (color space) image format:
 – Read individual pixels from the BMP image, convert pixels into YUV format
 – Can pack the pixels and operate on a set of pixels with a single instruction

• Bitmap image consists of 8-bit monochrome pixels
 – By packing these pixel values in a 128-bit register, we can operate on 128/8 = 16 values at a time
 – Significant performance boost
Example: Image Converter (2/5)

• FMADDPS – Multiply and add packed single precision floating point instruction
• One of the typical operations computed in transformations (e.g. DFT or FFT)

\[P = \sum_{n=1}^{N} f(n) \times x(n) \]
Example: Image Converter (3/5)

• FP numbers f(n) and x(n) in src1 and src2; p in dest;
• C implementation for N = 4 (128 bits):

```c
for (int i = 0; i < 4; i++)
    p = p + src1[i] * src2[i];
```

1) Regular x86 instructions for the inner loop:

- `fmul [...]`
- `faddp [...]`
- Instructions executed: 4 * 2 = 8 (x86)
Example: Image Converter (4/5)

• FP numbers \(f(n) \) and \(x(n) \) in \(\text{src1} \) and \(\text{src2} \); \(p \) in \(\text{dest} \);
• C implementation for \(N = 4 \) (128 bits):

\[
\text{for } (\text{int } i = 0; \ i < 4; \ i++) \\
\quad p = p + \text{src1}[i] \times \text{src2}[i];
\]

2) SSE2 instructions for the inner loop:

\[
\begin{align*}
// &\text{xmm0= }p, \ &\text{xmm1= }\text{src1}[i], \ &\text{xmm2= }\text{src2}[i] \\
\text{mulps } &\%\text{xmm1},\%\text{xmm2} \quad // \ &\text{xmm2 }\times \ &\text{xmm1} \\
\text{addps } &\%\text{xmm2},\%\text{xmm0} \quad // \ &\text{ xmm0 }+ \ &\text{ xmm2} \\
\end{align*}
\]

– Instructions executed: 2 (SSE2)
Example: Image Converter (5/5)

- FP numbers \(f(n) \) and \(x(n) \) in \(src1 \) and \(src2 \); \(p \) in \(dest \);
- C implementation for \(N = 4 \) (128 bits):

  ```c
  for (int i = 0; i < 4; i++)
      p = p + src1[i] * src2[i];
  ```

3) **SSE5** accomplishes the same in **one instruction**:

  ```
  fmaddps %xmm0, %xmm1, %xmm2, %xmm0
  // xmm2 * xmm1 + xmm0 -> xmm0
  // multiply xmm1 x xmm2 paired single,
  // then add product paired single to sum in xmm0
  ```
Agenda

- Intel SSE Intrinsics
- Administrivia
- Loop Unrolling
- Amdahl’s Law
- Meet the Staff
- Multiprocessor Systems
Intel SSE Intrinsics

• Intrinsics are C functions and procedures that translate to assembly language, including SSE instructions
 – With intrinsics, can program using these instructions indirectly
 – One-to-one correspondence between intrinsics and SSE instructions
Sample of SSE Intrinsics

• Vector data type: __m128d

Load and store operations:

_mm_load_pd MOVAPD/aligned, packed double
_mm_store_pd MOVAPD/aligned, packed double
_mm_loadu_pd MOVUPD/unaligned, packed double
_mm_storeu_pd MOVUPD/unaligned, packed double

Load and broadcast across vector

_mm_load1_pd MOVSD + shuffling

Arithmetic:

_mm_add_pd ADDPD/add, packed double
_mm_mul_pd MULPD/multiple, packed double
Example: 2 × 2 Matrix Multiply

Definition of Matrix Multiply:

\[C_{i,j} = (A \times B)_{i,j} = \sum_{k=1}^{2} A_{i,k} \times B_{k,j} \]

\[
\begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix}
\times
\begin{bmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{bmatrix}
=
\begin{bmatrix}
C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\
C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}
\end{bmatrix}
\]
Example: 2×2 Matrix Multiply

- Using the XMM registers
 - 64-bit(double precision/two doubles per XMM reg)

\[
\begin{align*}
C_{1,1} & \quad C_{2,1} \\
C_{1,2} & \quad C_{2,2}
\end{align*}
\]

Memory is column major

\[
\begin{align*}
A_{1,i} & \quad A_{2,i} \\
B_{i,1} & \quad B_{i,1} \\
B_{i,2} & \quad B_{i,2}
\end{align*}
\]
Example: 2 × 2 Matrix Multiply

• Initialization

\[
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\]

• \(i = 1 \)

\[
\begin{bmatrix}
A_{1,1} & A_{2,1} \\
B_{1,1} & B_{1,1} \\
B_{1,2} & B_{1,2}
\end{bmatrix}
\]

_\text{_mm_load}_pd: Stored in memory in Column order

_\text{_mm_load1}_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register
Example: 2×2 Matrix Multiply

• First iteration intermediate result

\[
\begin{align*}
\text{c}_1 & \quad 0 + \text{A}_{1,1} \times \text{B}_{1,1} \quad 0 + \text{A}_{2,1} \times \text{B}_{1,1} \\
\text{c}_2 & \quad 0 + \text{A}_{1,1} \times \text{B}_{1,2} \quad 0 + \text{A}_{2,1} \times \text{B}_{1,2}
\end{align*}
\]

\[
c_1 = _\text{mm}_\text{add}_\text{pd}(c_1, _\text{mm}_\text{mul}_\text{pd}(a, b_1));
\]

\[
c_2 = _\text{mm}_\text{add}_\text{pd}(c_2, _\text{mm}_\text{mul}_\text{pd}(a, b_2));
\]

• $i = 1$

\[
a = \begin{array}{c|c}
\text{A}_{1,1} & \text{A}_{2,1} \\
\end{array}
\]

\[
\text{mm}\text{load}_\text{pd}: \text{Stored in memory in Column order}
\]

\[
\begin{array}{c|c}
b_1 & \text{B}_{1,1} \\
\hline b_2 & \text{B}_{1,2} \\
\end{array}
\]

\[
\text{mm}\text{load1}_\text{pd}: \text{SSE instruction that loads a double word and stores it in the high and low double words of the XMM register}
\]
Example: 2 × 2 Matrix Multiply

• First iteration intermediate result

\[
\begin{align*}
\text{c}_1 & = 0 + A_{1,1}B_{1,1} + 0 + A_{2,1}B_{1,1} \\
\text{c}_2 & = 0 + A_{1,1}B_{1,2} + 0 + A_{2,1}B_{1,2} \\
\end{align*}
\]

c1 = _mm_add_pd(c1, _mm_mul_pd(a, b1));
c2 = _mm_add_pd(c2, _mm_mul_pd(a, b2));

• i = 2

\[
\begin{align*}
\text{a} & = A_{1,1} \ | \ A_{2,1} \\
\text{b}_1 & = B_{1,1} \ | \ B_{1,1} \\
\text{b}_2 & = B_{1,2} \ | \ B_{1,2} \\
\end{align*}
\]

_mm_load_pd: Stored in memory in Column order

_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register
Example: 2×2 Matrix Multiply

- Second iteration intermediate result

\[
\begin{array}{c|c|c}
& C_{1,1} & C_{2,1} \\
\hline
\text{c}_1 & A_{1,1}B_{1,1}+A_{1,2}B_{2,1} & A_{2,1}B_{1,1}+A_{2,2}B_{2,1} \\
\text{c}_2 & A_{1,1}B_{1,2}+A_{1,2}B_{2,2} & A_{2,1}B_{1,2}+A_{2,2}B_{2,2} \\
\end{array}
\]

- $i = 2$

\[
c_1 = \text{_mm_add_pd}(c_1, \text{_mm_mul_pd}(a,b1));
\]
\[
c_2 = \text{_mm_add_pd}(c_2, \text{_mm_mul_pd}(a,b2));
\]

- \text{_mm_load_pd:} Stored in memory in Column order

- \text{_mm_load1_pd:} SSE instruction that loads a double word and stores it in the high and low double words of the XMM register
#include <stdio.h>

// header file for SSE4.2 compiler intrinsics
#include <nmmintrin.h>

// NOTE: vector registers will be represented in comments as v1 = [a | b]
// where v1 is a variable of type __m128d and a,b are doubles

int main(void) {
 // allocate A,B,C aligned on 16-byte boundaries
 double B[4] __attribute__((aligned(16)));
 double C[4] __attribute__((aligned(16)));
 int lda = 2;
 int i = 0;
 // declare a couple 128-bit vector variables
 __m128d c1,c2,a,b1,b2;

 /* A = (note column order!)
 1 0
 0 1 */

 /* B = (note column order!)
 1 3
 2 4 */
 B[0] = 1.0; B[1] = 2.0; B[2] = 3.0; B[3] = 4.0;

 /* C = (note column order!)
 0 0
 0 0 */
 C[0] = 0.0; C[1] = 0.0; C[2] = 0.0; C[3] = 0.0;
 /* continued on next slide */
2 x 2 Matrix Multiply Code (2/2)

// used aligned loads to set
// c1 = [c_{11} | c_{21}]
c1 = _mm_load_pd(C+0*lda);
// c2 = [c_{12} | c_{22}]
c2 = _mm_load_pd(C+1*lda);

for (i = 0; i < 2; i++) {
 /* a =
 i = 0: [a_{11} | a_{21}]
 i = 1: [a_{12} | a_{22}]
 */
 a = _mm_load_pd(A+i*lda);
 /* b1 =
 i = 0: [b_{11} | b_{11}]
 i = 1: [b_{21} | b_{21}]
 */
 b1 = _mm_load1_pd(B+i+0*lda);
 /* b2 =
 i = 0: [b_{12} | b_{12}]
 i = 1: [b_{22} | b_{22}]
 */
 b2 = _mm_load1_pd(B+i+1*lda);
 /* c1 =
 i = 0: [0 + a_{11}b_{11} | 0 + a_{21}b_{11}]
 i = 1: [c_{11} + a_{21}b_{21} | c_{21} + a_{22}b_{21}]
 */
 c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
 /* c2 =
 i = 0: [0 + a_{11}b_{12} | 0 + a_{21}b_{12}]
 i = 1: [c_{12} + a_{21}b_{22} | c_{22} + a_{22}b_{22}]
 */
 c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
}

// store c1,c2 back into C for completion
_mm_store_pd(C+0*lda,c1);
_mm_store_pd(C+1*lda,c2);

// print C
printf("%g,%g\n%g,%g\n",C[0],C[1],C[2],C[3]);
return 0;
}
Inner loop from gcc -O -S

L2: movapd (%rax,%rsi), %xmm1 // Load aligned A[i,i+1]->m1
movddup (%rdx), %xmm0 // Load B[j], duplicate->m0
mulpd %xmm1, %xmm0 // Multiply m0*m1->m0
addpd %xmm0, %xmm3 // Add m0+m3->m3
movddup 16(%rdx), %xmm0 // Load B[j+1], duplicate->m0
mulpd %xmm0, %xmm1 // Multiply m0*m1->m1
addpd %xmm1, %xmm2 // Add m1+m2->m2
addq 16, %rax // rax+16 -> rax (i+=2)
addq 8, %rdx // rdx+8 -> rdx (j+=1)
cmpq 32, %rax // rax == 32?
jne L2 // jump to L2 if not equal
movapd %xmm3, (%rcx) // store aligned m3 into C[k,k+1]
movapd %xmm2, (%rdi) // store aligned m2 into C[l,l+1]
Performance-Driven ISA Extensions

• Subword parallelism, used primarily for multimedia applications
 – Intel MMX: multimedia extension
 • 64-bit registers can hold multiple integer operands
 – Intel SSE: Streaming SIMD extension
 • 128-bit registers can hold several floating-point operands

• Adding instructions that do more work per cycle
 – Shift-add: two instructions in one (e.g. multiply by 5)
 – Multiply-add: two instructions in one (x := c + a * b)
 – Multiply-accumulate: reduce round-off error (s := s + a * b)
 – Conditional copy: avoid some branches (e.g. if-then-else)
 – Conditional greater than...
Agenda

• Intel SSE Intrinsics
• Administrivia
• Loop Unrolling
• Amdahl’s Law
• Meet the Staff
• Multiprocessor Systems
Administrivia

• HW5 due 7/23, Proj3 due 7/20
• Proj 3 party on Fri (7/20), 4-6PM @Woz
• “Lost” Discussion Sat. Cory 540AB, 12-2PM
• Midterm 2 is coming up! Next Wed. in lecture
 – Covering up to Performance
 – Review Session Sunday 2-4pm @GPB 100
 – There will be discussion after MT2 :(

7/19/2018
Agenda

• Intel SSE Intrinsics
• Administrivia
• Loop Unrolling
• Amdahl’s Law
• Meet the Staff
• Multiprocessor Systems
Data Level Parallelism and SIMD

• SIMD wants adjacent values in memory that can be operated in parallel

• Usually specified in programs as loops

 \[
 \text{for}(i=0; \ i<1000; \ i++) \ \\
 \quad x[i] = x[i] + s;
 \]

• How can we reveal more data level parallelism than is available in a single iteration of a loop?
 – *Unroll the loop* and adjust iteration rate
Looping in RISC-V

Assumptions:
- s0 → initial address (top of array)
- s1 → scalar value s
- s2 → termination address (end of array)

Loop:

```
lw    t0, 0(s0)
addu  t0, t0, s1    # add s to array element
sw    t0, 0(s0)    # store result
addi  s0, s0, 4    # move to next element
bne   s0, s2, Loop  # repeat Loop if not done
```
Loop Unrolled

Loop:

```
lw   t0,0(s0)
add  t0,t0,s1
sw   t0,0(s0)
lw   t1,4(s0)
add  t1,t1,s1
sw   t1,4(s0)
lw   t2,8(s0)
add  t2,t2,s1
sw   t2,8(s0)
lw   t3,12(s0)
add  t3,t3,s1
sw   t3,12(s0)
addi  s0,s0,16
bne  s0,s2,Loop
```

NOTE:

1. Loop overhead (addiu, bne) encountered only once every 4 data iterations

2. This unrolling works if
 \[\text{loop_limit mod 4} = 0 \]

3. Using different registers allows us to eliminate stalls by reordering...
Loop Unrolled Scheduled

Note: We just switched from integer instructions to single-precision FP instructions!

Loop:

- `flw t0,0(s0)`
- `flw t1,4(s0)`
- `flw t2,8(s0)`
- `flw t3,12(s0)`
- `fadd.s t0,t0,s1` (4 Adds side-by-side: Could replace with 4 wide SIMD Add)
- `fadd.s t1,t1,s1` (4 Adds side-by-side: Could replace with 4 wide SIMD Add)
- `fadd.s t2,t2,s1` (4 Adds side-by-side: Could replace with 4 wide SIMD Add)
- `fadd.s t3,t3,s1` (4 Adds side-by-side: Could replace with 4 wide SIMD Add)
- `fsw t0,0(s0)`
- `fsw t1,4(s0)`
- `fsw t2,8(s0)`
- `fsw t3,12(s0)` (4 Stores side-by-side: Could replace with 4 wide SIMD Store)
- `addi s0,s0,16`
- `bne s0,s2,Loop`

Can SIMD-ize AND unroll if desired
Loop Unrolling in C

• Instead of compiler doing loop unrolling, could do it yourself in C:

```c
for (i=0; i<1000; i++)
    x[i] = x[i] + s;

for (i=0; i<1000; i=i+4) {
    x[i]   = x[i]   + s;
    x[i+1] = x[i+1] + s;
    x[i+2] = x[i+2] + s;
    x[i+3] = x[i+3] + s;
}
```

What is downside of doing this in C?
Generalizing Loop Unrolling

• Take a loop of \textbf{n iterations} and perform a \textbf{k-fold} unrolling of the body of the loop:
 – First run the loop with \(k \) copies of the body \(\lfloor n/k \rfloor \) times
 – To finish leftovers, then run the loop with 1 copy of the body \(n \mod k \) times
Drawbacks to Loop Unrolling

- Loop unrolling can greatly speedup your code but isn’t perfect for a couple of reasons
 - If you are doing it by hand its a really inefficient/tedious task
 - In reality you would want your compiler to do this but we want you to understand it
 - Loop unrolling increases your static code size
 - Static code size is important for accesses to your instruction cache
 - You might not want k to be too large
 - Try find a balance between less executed instructions and small static code size
Code Optimization

• Loop unrolling isn’t really a form of parallelism but is instead an example of code optimization
 – Code is converted from a form easy to understand to one with better performance
• This is often the work of your compiler but it may not always be able to make the best optimizations
• Let’s consider another example of how you can optimize your code
Loop Invariants

for (int i = 0; i < n; i++) {
 arr[i] = (f(x) - g(y)) * arr[i];
}

• This is an example of what we call a loop invariant
 – Invariant meaning does not change in the loop
• What happens if f and g are expensive?
 – Then f and g are computed each iteration, n times in total
 – But the loop recomputes the result
Loop Invariants

\[z = (f(x) - g(y)) \]

for (int i = 0; i < n; i++) {
 arr[i] = z * arr[i];
}

• Solution: Move the code outside of the loop and only compute it once since it never changes
 – Now n expensive calls has become 1 expensive call
• But can we do better?
Loop Invariants

• What happens is f and/or g is really really expensive
 – We want compute it as little as possible
• Now we always compute it once
• But what happens if n <= 0
 – Then we compute the invariant once
 – But we never enter the loop so we never use it
• Solution: Add a check to avoid computing it if we don’t enter the loop
Loop Invariants

```java
if (n > 0) {
    z = f(x) - g(y);
    for (int i = 0; i < n; i++) {
        arr[i] += z * arr[i];
    }
}
```

Now we compute the invariant once if we enter the loop and otherwise not at all.
Agenda

- Intel SSE Intrinsics
- Administrivia
- Loop Unrolling
- Amdahl’s Law
- Meet the Staff
- Multiprocessor Systems
Amdahl’s Law

• Speedup due to enhancement E:

\[
\text{Speedup w/E} = \frac{\text{Exec time w/o E}}{\text{Exec time w/E}}
\]

• Example: Suppose that enhancement E accelerates a fraction \(F\) (\(F<1\)) of the task by a factor \(S\) (\(S>1\)) and the remainder of the task is unaffected.

\[
\text{Exec time w/E} = \text{Exec Time w/o E} \times \left[(1-F) + \frac{F}{S} \right]
\]

\[
\text{Speedup w/E} = \frac{1}{\left[(1-F) + \frac{F}{S} \right]}
\]
Amdahl’s Law

- Speedup = \(\frac{1}{(1 - F) + \frac{F}{S}} \)

 Non-speed-up part \((1 - F) \)

 Speed-up part \(\frac{F}{S} \)

- Example: the execution time of half of the program can be accelerated by a factor of 2. What is the program speed-up overall?

 \[
 \frac{1}{0.5 + 0.5} = \frac{1}{0.5 + 0.25} = 1.33
 \]
Amdahl’s (Heartbreaking) Law

- The amount of speedup that can be achieved through parallelism is limited by the non-parallel portion of your program!
Parallel Speed-up Examples (1/3)

Amdahl’s Law tells us that to achieve linear speedup with more processors, none of the original computation can be scalar (non-parallelizable).

To get a speedup of 90 from 100 processors, the percentage of the original program that could be scalar would have to be 0.1% or less.

\[\text{Speedup} = \frac{1}{(0.001 + 0.999/100)} = 90.99 \]

- Consider an enhancement which runs 20 times faster but which is only usable 15% of the time.

 \[\text{Speedup} = \frac{1}{(0.85 + 0.15/20)} = 1.166 \]

- What if it’s usable 25% of the time?

 \[\text{Speedup} = \frac{1}{(0.75 + 0.25/20)} = 1.311 \]

Nowhere near 20x speedup!
Parallel Speed-up Examples (2/3)

- 10 “scalar” operations (non-parallelizable)
- 100 parallelizable operations
 - Say, element-wise addition of two 10x10 matrices.
- 110 operations
 - \(\frac{100}{110} = 0.909 \) Parallelizable, \(\frac{10}{110} = 0.091 \) Scalar

\[Z_1 + Z_2 + \ldots + Z_{10} \]

\[
\begin{array}{c|c|c}
X_{1,1} & X_{1,10} & Y_{1,1} & Y_{1,10} \\
\vdots & + & \vdots \\
X_{10,1} & X_{10,10} & Y_{10,1} & Y_{10,10}
\end{array}
\]

Partition 10 ways and perform on 10 parallel processing units.
Parallel Speed-up Examples (3/3)

Speedup w/ E = \[\frac{1}{(1-F) + \frac{F}{S}} \]

• Consider summing 10 scalar variables and two 10 by 10 matrices (matrix sum) on 10 processors
 Speedup = \[1/(0.091 + 0.909/10) = 1/0.1819 = 5.5 \]

• What if there are 100 processors?
 Speedup = \[1/(0.091 + 0.909/100) = 1/0.10009 = 10.0 \]

• What if the matrices are 100 by 100 (or 10,010 adds in total) on 10 processors?
 Speedup = \[1/(0.001 + 0.999/10) = 1/0.1009 = 9.9 \]

• What if there are 100 processors?
 Speedup = \[1/(0.001 + 0.999/100) = 1/0.01099 = 91 \]
Question: Suppose a program spends 80% of its time in a square root routine. How much must you speed up square root to make the program run 5 times faster?

\[
\text{Speedup w/ } E = \frac{1}{(1 - F) + \frac{F}{S}}
\]

(A) 10
(B) 20
(C) 100
(D) None of the above
Question: Suppose a program spends 80% of its time in a square root routine. How much must you speed up square root to make the program run 5 times faster?

\[
\text{Speedup w/ } E = \frac{1}{(1 - F) + \frac{F}{S}}
\]

\[
5 = \frac{1}{(1 - 0.8) + \frac{0.8}{S}}
\]

\[
S = \frac{0.8}{\left(\frac{1}{5} - 0.2\right)} = \infty
\]

(A) 10
(B) 20
(C) 100
(D) None of the above
Agenda

• Intel SSE Intrinsics
• Administrivia
• Loop Unrolling
• Amdahl’s Law
• Meet the Staff
• Multiprocessor Systems
Meet the Staff

<table>
<thead>
<tr>
<th></th>
<th>Steven</th>
<th>Nick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trash TV Show</td>
<td>The Bachelorette</td>
<td>Mike Tyson Mysteries</td>
</tr>
<tr>
<td>Favorite Plot Twist</td>
<td>Get Out</td>
<td>Hot Fuzz</td>
</tr>
<tr>
<td>Best Bathroom in Cal</td>
<td>MLK Secret Bathroom</td>
<td>Campbell Hall</td>
</tr>
<tr>
<td>Best Study Spot</td>
<td>O’Brien Hall</td>
<td>Cory 540AB</td>
</tr>
</tbody>
</table>
Agenda

• Intel SSE Intrinsics
• Administrivia
• Loop Unrolling
• Amdahl’s Law
• Meet the Staff
• Multiprocessor Systems
Great Idea #4: Parallelism

- **Parallel Requests**
 Assigned to computer
 e.g. search “Garcia”

- **Parallel Threads**
 Assigned to core
 e.g. lookup, ads

- **Parallel Instructions**
 > 1 instruction @ one time
 e.g. 5 pipelined instructions

- **Parallel Data**
 > 1 data item @ one time
 e.g. add of 4 pairs of words

- **Hardware descriptions**
 All gates functioning in parallel at same time

Software

Hardware

Leverage Parallelism & Achieve High Performance

- Warehouse Scale Computer
- Computer
 - Core
 - …
 - Core
- Memory
- Input/Output

Instruction Unit(s) Functional Unit(s)

- $A_0 + B_0$
- $A_1 + B_1$
- $A_2 + B_2$
- $A_3 + B_3$

Cache Memory

Logic Gates
Threads

• *Thread of execution:* Smallest unit of processing scheduled by operating system

• On uniprocessor, multithreading occurs by *time-division multiplexing*
 – Processor switches between different threads
 – *Context switching* happens frequently enough user perceives threads as running at the same time

• On a multiprocessor, threads run at the same time, with each processor running a thread
Terminology

• **Program:** An executable
 – Example your server from proj1
• **Process:** A running program or portion of program that completes some task
 – Example a running instance of your server
• **Software Thread:** A unit of processing that is described by the process running and the values of the registers
• **Hardware Thread:** Hardware to allow the execution of a single software thread
Multithreading

• **Basic idea**: Processor resources are expensive and should not be left idle

• Long memory latency to memory on cache miss?
 – Hardware switches threads to bring in other useful work while waiting for cache miss
 – Cost of thread context switch must be much less than cache miss latency

• Put in redundant hardware so don’t have to save context on every thread switch:
 – PC, Registers, L1 caches?
Hardware Support for Multithreading

- Two copies of PC and Registers inside processor hardware
- Looks like two processors to software (hardware thread 0, hardware thread 1)
- Control logic decides which thread to execute an instruction from next
Multiprocessor Systems (MIMD)

- **Multiprocessor (MIMD):** a computer system with at least 2 processors or cores ("multicore")
 - Each core has its own PC and executes an independent instruction stream
 - Processors share the same memory space and can communicate via loads and stores to common locations

1. Deliver high throughput for independent jobs via request-level or task-level parallelism

2. **Improve the run time of a single program that has been specially crafted to run on a multiprocessor - a parallel processing program**
Multiprocessor Systems

Processor 0
- Control
- Datapath
 - PC
 - Registers
 - (ALU)
- Memory Accesses

Processor 1
- Control
- Datapath
 - PC
 - Registers
 - (ALU)
- Memory Accesses

Memory
- Bytes
- I/O-Memory Interfaces

Input
Output
Multithreading vs. Multicore

• Multithreading => Better Utilization
 – ≈1% more hardware, 1.10X better performance?
 – Share integer adders, floating point adders, caches (L1 I, L1 D, L2 cache, L3 cache), Memory Controller

• Multicore => Duplicate Processors
 – ≈50% more hardware, ≈2X better performance?
 – Share some caches (L2 cache, L3 cache), Memory Controller

• Modern machines do both
 – Multiple cores with multiples threads per core
Transition to Multicore

Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond
Summary

• Intel SSE SIMD Instructions
 – One instruction fetch that operates on multiple operands simultaneously
 – 128/64 bit XMM registers
 – Embed the SSE machine instructions directly into C programs through use of intrinsics
• Loop Unrolling: Access more of array in each iteration of a loop
• Amdahl’s Law limits benefits of parallelization
• Multiprocessor systems use shared memory (single address space)