Example: Representing 1/3 in MIPS

\[
\frac{1}{3} = 0.33333\ldots_{10} = 0.25 + 0.0625 + 0.015625 + \ldots = 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + \ldots
\]

- Sign: 0
- Exponent = -2 + 127 = 125 = 01111101
- Significand = 0101010101…

\[
0.111 \ 1101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101 \ 0101 \ \text{(2's complement)}
\]

Representation for ±\(\infty\)

- In FP, divide by 0 should produce ±\(\infty\), not overflow.
 - Why?
 - OK to do further computations with \(\infty\)
 E.g., \(X/0 > Y\) may be a valid comparison
 - Ask math majors
 - IEEE 754 represents ±\(\infty\)
 - Most positive exponent reserved for \(\infty\)
 - Significands all zeroes

Representation for Not a Number

- What is \(\sqrt{-4.0}\) or \(0/0\)?
 - If \(\infty\) not an error, these shouldn’t be either.
 - Called Not a Number (NaN)
 - Exponent = 255, Significand nonzero
 - Why is this useful?
 - Hope NaNs help with debugging?
 - They contaminate: \(\text{op}(\text{NaN}, X) = \text{NaN}\)

Special Numbers

- What have we defined so far?
 (Single Precision)

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>+/- fl. pt. #</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>+/- (\infty)</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>???</td>
</tr>
</tbody>
</table>

- Professor Kahan had clever ideas; “Waste not, want not”
 - Exp=0,255 & Sig!=0 ...

Representation for Denorms (1/2)

- Problem: There’s a gap among representable FP numbers around 0
 - Smallest representable pos num:
 \(a = 1.0…, 2^{-126} = 2^{-126}\)
 - Second smallest representable pos num:
 \(b = 1.000…, 1, 2^{-126} = 2^{126} + 2^{149}\)

\[
\begin{align*}
a &= 2^{-126} \\
b &= 2^{-126}
\end{align*}
\]

- Gaps!

\[
\begin{align*}
&\infty \\
&\infty \\
&\infty \\
&\infty \\
\end{align*}
\]

- Normalization and implicit 1 is to blame!
Representation for Denorms (2/2)

- Solution:
 - We still haven’t used Exponent = 0, Significand nonzero
 - Denormalized number: no leading 1, implicit exponent = -126.
 - Smallest representable pos num: \(a = 2^{-149} \)
 - Second smallest representable pos num: \(b = 2^{-148} \)

Overview

- Reserve exponents, significands:
 - Exponent | Significand | Object
 - 0 | 0 | 0
 - 1-254 | anything | +/- fl. pt. #
 - 255 | 0 | +/- \(\infty \)
 - 255 | nonzero | NaN

Rounding

- Math on real numbers \(\Rightarrow \) we worry about rounding to fit result in the significant field.
- FP hardware carries 2 extra bits of precision, and rounds for proper value
- Rounding occurs when converting...
 - double to single precision
 - floating point # to an integer

IEEE Four Rounding Modes

- Round towards + \(\infty \)
 - ALWAYS round “up”: 2.1 \(\Rightarrow \) 3, -2.1 \(\Rightarrow \) -2
- Round towards - \(\infty \)
 - ALWAYS round “down”: 1.9 \(\Rightarrow \) 1, -1.9 \(\Rightarrow \) -2
- Truncate
 - Just drop the last bits (round towards 0)
- Round to (nearest) even (default)
 - Normal rounding, almost: 2.5 \(\Rightarrow \) 2, 3.5 \(\Rightarrow \) 4
 - Like you learned in grade school
 - Insures fairness on calculation
 - Half the time we round up, other half down

Integer Multiplication (1/3)

- Paper and pencil example (unsigned):

 \[
 \begin{array}{c|c|c|c|c|c|c|c|c}
 \text{Multiplicand} & 1000 & 8 \\
 \text{Multiplier} & \times & 1001 & 9 \\
 \hline
 1000 & \\
 0000 & \\
 0000 & \\
 +1000 & \\
 \hline
 01001000 & \\
 \end{array}
 \]

 \(m \text{ bits } \times n \text{ bits } = m + n \text{ bit product} \)

Integer Multiplication (2/3)

- In MIPS, we multiply registers, so:
 - 32-bit value x 32-bit value = 64-bit value
- Syntax of Multiplication (signed):
 - \text{mult} register1, register2
 - Multiplies 32-bit values in those registers & puts 64-bit product in special result regs:
 - puts product upper half in hi, lower half in lo
 - hi and lo are 2 registers separate from the 32 general purpose registers
- Use \text{mfhi} register & \text{mflo} register to move from hi, lo to another register
Integer Multiplication (3/3)

• Example:
 • in C: `a = b * c;
 • in MIPS:
 - let b be $s2; let c be $s3; and let a be $s0 and $s1 (since it may be up to 64 bits)
 - mult $s2,$s3 # b*c
 of
 - mthi $s0 # upper half
 - mflo $s1 # lower half of
 product
 • Note: Often, we only care about the lower half of the product.

Integer Division (2/2)

• Syntax of Division (signed):
 • `div register1, register2`
 • Divides 32-bit register 1 by 32-bit register 2:
 • puts remainder of division in hi, quotient in lo
 • Implements C division (/) and modulo (%)
• Example in C: `a = c / d; b = c % d;`
• in MIPS:
 - `div $s2,$s3 # lo=c/d, hi=cd`
 - `mthi $s0 # get quotient`
 - `mflo $s1 # get remainder`

Integer Division (1/2)

• Paper and pencil example (unsigned):
  ```
  Divisor 100010100100
  -1000
  1010
  -1000
  =10 Remainder
  ```
 (or Modulo result)
• Dividend = Quotient x Divisor + Remainder

Unsigned Instructions & Overflow

• MIPS also has versions of `mul`, `div` for unsigned operands:
 • `multu`
 • `divu`
 • Determines whether or not the product and quotient are changed if the operands are signed or unsigned.
• MIPS does not check overflow on ANY signed/unsigned multiply, divide instr
• Up to the software to check hi

MIPS Floating Point Architecture

• Separate floating point instructions:
 • Single Precision:
 • `add.s`, `sub.s`, `mul.s`, `div.s`
 • Double Precision:
 • `add.d`, `sub.d`, `mul.d`, `div.d`
• These are far more complicated than their integer counterparts
• Can take much longer to execute

FP Addition & Subtraction

• Much more difficult than with integers (can’t just add significands)
• How do we do it?
 • De-normalize to match larger exponent
 • Add significands to get resulting one
 • Normalize (check for under/overflow)
 • Round if needed (may need to renormalize)
• If signs ≠, do a subtract. (Subtract similar)
 • If signs ≠ for add (or = for sub), what’s ans sign?
• Question: How do we integrate this into the integer arithmetic unit? [Answer: We don’t!]
MIPS Floating Point Architecture (1)

Problems:
- Inefficient to have different instructions take vastly differing amounts of time.
- Generally, a particular piece of data will not change FP \(\leftrightarrow \) int within a program.
 - Only 1 type of instruction will be used on it.
- Some programs do no FP calculations
- It takes lots of hardware relative to integers to do FP fast

MIPS Floating Point Architecture (2)

1990 Computer actually contains multiple separate chips:
- Processor: handles all the normal stuff
- Coprocessor 1: handles FP and only FP;
- more coprocessors?... Yes, later
- Today, FP coprocessor integrated with CPU, or cheap chips may leave out FP HW
- Instructions to move data between main processor and coprocessors:
 * mfc0, mtc0, mfc1, mtc1, etc.
- Appendix contains many more FP ops

Peer Instruction 1

1. Let \(X \) = # of floats between 1 and 2
2. Let \(Y \) = # of floats between 2 and 3

Peer Instruction 2

1. Converting float \(\rightarrow \) int \(\rightarrow \) float produces same float number
2. Converting int \(\rightarrow \) float \(\rightarrow \) int produces same int number
3. FP add is associative:
 \((x+y)+z = x+(y+z)\)

“And in conclusion…”

- Reserve exponents, significands:
 - Exponent Significand Object
 - 0 0 0 nonzero Denorm
 - 1-254 anything +/- fl. pt. #
 - 255 0 +/- \(\infty \)
 - 255 nonzero NaN
- Integer mult, div uses hi, lo regs
- mfhi and mflo copies out.
- Four rounding modes (to even default)
- MIPS FL ops complicated, expensive