20 years from now...
1) We'll all have robot servants
or...
2) The world will be a smoking ruin
Example: Representing 1/3 in MIPS

\[\frac{1}{3} \]

\[
= 0.33333\ldots_{10} \\
= 0.25 + 0.0625 + 0.015625 + 0.00390625 + \ldots \\
= 1/4 + 1/16 + 1/64 + 1/256 + \ldots \\
= 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + \ldots \\
= 0.0101010101\ldots_2 \times 2^0 \\
= 1.0101010101\ldots_2 \times 2^{-2} \\
\]

• Sign: 0
• Exponent = -2 + 127 = 125 = 01111101
• Significand = 0101010101\ldots
Representation for $\pm \infty$

• In FP, divide by 0 should produce $\pm \infty$, not overflow.

• Why?
 • OK to do further computations with ∞
 E.g., $X/0 > Y$ may be a valid comparison
 • Ask math majors

• IEEE 754 represents $\pm \infty$
 • Most positive exponent reserved for ∞
 • Significands all zeroes
Special Numbers

What have we defined so far? (Single Precision)

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>???</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>+/- fl. pt. #</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>+/- ∞</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>???</td>
</tr>
</tbody>
</table>

Professor Kahan had clever ideas; “Waste not, want not”

- Exp=0, 255 & Sig!=0 ...
Representation for Not a Number

• What is $\sqrt{-4.0}$ or $0/0$?
 • If ∞ not an error, these shouldn’t be either.
 • Called **Not a Number (NaN)**
 • Exponent = 255, Significand nonzero

• Why is this useful?
 • Hope NaNs help with debugging?
 • They contaminate: $\text{op}(\text{NaN}, X) = \text{NaN}$
Representation for Denorms (1/2)

• Problem: There’s a gap among representable FP numbers around 0

• Smallest representable pos num:
 \[a = 1.0\ldots 2 * 2^{-126} = 2^{-126} \]

• Second smallest representable pos num:
 \[b = 1.000\ldots1 2 * 2^{-126} = 2^{-126} + 2^{-149} \]

\[a - 0 = 2^{-126} \]
\[b - a = 2^{-149} \]

Normalization and implicit 1 is to blame!
Representation for Denorms (2/2)

• Solution:
 • We still haven’t used Exponent = 0, Significand nonzero
 • Denormalized number: no leading 1, implicit exponent = -126.
 • Smallest representable pos num:
 \(a = 2^{-149} \)
 • Second smallest representable pos num:
 \(b = 2^{-148} \)
Overview

- **Reserve exponents, significands:**

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>Denorm</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>+/- fl. pt. #</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>+/- (\infty)</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Rounding

• Math on real numbers \Rightarrow we worry about rounding to fit result in the significant field.

• FP hardware carries 2 extra bits of precision, and rounds for proper value

• Rounding occurs when converting…
 • double to single precision
 • floating point # to an integer
IEEE Four Rounding Modes

• Round towards $+\infty$
 • ALWAYS round “up”: $2.1 \Rightarrow 3$, $-2.1 \Rightarrow -2$

• Round towards $-\infty$
 • ALWAYS round “down”: $1.9 \Rightarrow 1$, $-1.9 \Rightarrow -2$

• Truncate
 • Just drop the last bits (round towards 0)

• Round to (nearest) even (default)
 • Normal rounding, almost: $2.5 \Rightarrow 2$, $3.5 \Rightarrow 4$
 • Like you learned in grade school
 • Insures fairness on calculation
 • Half the time we round up, other half down
Integer Multiplication (1/3)

- Paper and pencil example (unsigned):

 Multiplicand: 1000 8
 Multiplier: x1001 9

 1000
 0000
 0000
 +1000
 01001000

- m bits $\times n$ bits = $m + n$ bit product
Integer Multiplication (2/3)

• In MIPS, we multiply registers, so:
 • 32-bit value x 32-bit value = 64-bit value

• Syntax of Multiplication (signed):
 • `mul register1, register2`
 • Multiplies 32-bit values in those registers & puts 64-bit product in special result regs:
 - puts product upper half in hi, lower half in lo
 • hi and lo are 2 registers separate from the 32 general purpose registers
 • Use `mfhi register` & `mflo register` to move from hi, lo to another register
Integer Multiplication (3/3)

• Example:
 • in C: \[a = b \times c; \]
 • in MIPS:
 - let b be $s2; let c be $s3; and let a be $s0 and $s1 (since it may be up to 64 bits)

```
mult $s2,$s3 # b*c
mfhi $s0 # upper half of product into $s0
mflo $s1 # lower half of product into $s1
```

• Note: Often, we only care about the lower half of the product.
Integer Division (1/2)

• Paper and pencil example (unsigned):

\[
\begin{array}{c|c}
\text{Divisor} & 1000 \\
\hline
\text{1001010} & \text{Dividend} \\
-1000 & \\
\hline
101011010 & \\
-1000 & \\
\hline
10 & \text{Remainder (or Modulo result)}
\end{array}
\]

\[\text{Dividend} = \text{Quotient} \times \text{Divisor} + \text{Remainder}\]
Integer Division (2/2)

• Syntax of Division (signed):
 • `div register1, register2`
 • Divides 32-bit register 1 by 32-bit register 2:
 • puts remainder of division in `hi`, quotient in `lo`

• Implements C division (`/`) and modulo (`%`)

• Example in C:
  ```
  a = c / d;
  b = c % d;
  ```

• in MIPS:
  ```
  a $s0; b $s1; c $s2; d $s3
  div $s2,$s3        # lo=c/d, hi=c%d
  mflo $s0           # get quotient
  mfhi $s1           # get remainder
  ```
 Unsigned Instructions & Overflow

• MIPS also has versions of `mult`, `div` for unsigned operands:

 `multu`

 `divu`

 • Determines whether or not the product and quotient are changed if the operands are signed or unsigned.

• MIPS does not check overflow on ANY signed/unsigned multiply, divide instr

 • Up to the software to check `hi`
FP Addition & Subtraction

• Much more difficult than with integers (can’t just add significands)

• How do we do it?
 • De-normalize to match larger exponent
 • Add significands to get resulting one
 • Normalize (& check for under/overflow)
 • Round if needed (may need to renormalize)

• If signs ≠, do a subtract. (Subtract similar)
 • If signs ≠ for add (or = for sub), what’s ans sign?

• Question: How do we integrate this into the integer arithmetic unit? [Answer: We don’t!]
MIPS Floating Point Architecture

• Separate floating point instructions:
 • Single Precision:
 add.s, sub.s, mul.s, div.s
 • Double Precision:
 add.d, sub.d, mul.d, div.d

• These are far more complicated than their integer counterparts
 • Can take much longer to execute
MIPS Floating Point Architecture

• Problems:
 • Inefficient to have different instructions take vastly differing amounts of time.
 • Generally, a particular piece of data will not change \(\Leftrightarrow \text{int} \) within a program.
 - Only 1 type of instruction will be used on it.
 • Some programs do no FP calculations
 • It takes lots of hardware relative to integers to do FP fast
MIPS Floating Point Architecture

• 1990 Solution: Make a completely separate chip that handles only FP.

• **Coprocessor 1**: FP chip
 • contains 32 32-bit registers: $f0, f1, …
 • most of the registers specified in .s and .d instruction refer to this set
 • separate load and store: `lwc1` and `swc1` (“load word coprocessor 1”, “store …”)
 • Double Precision: by convention, even/odd pair contain one DP FP number: $f0/f1, f2/f3, …, f30/f31
 - Even register is the name
MIPS Floating Point Architecture

- 1990 Computer actually contains multiple separate chips:
 - Processor: handles all the normal stuff
 - Coprocessor 1: handles FP and only FP;
 - more coprocessors?… Yes, later
 - Today, FP coprocessor integrated with CPU, or cheap chips may leave out FP HW

- Instructions to move data between main processor and coprocessors:
 - mfc0, mtc0, mfc1, mtc1, etc.

- Appendix contains many more FP ops
Peer Instruction 1

- Let $X = \#$ of floats between 1 and 2
- Let $Y = \#$ of floats between 2 and 3

1: $X > Y$
2: $X < Y$
3: $X = Y$
1. Converting float -> int -> float produces same float number

2. Converting int -> float -> int produces same int number

3. FP add is associative:
 \[(x+y)+z = x+(y+z)\]
“And in conclusion…”

• Reserve exponents, significands:

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Significand</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>nonzero</td>
<td>Denorm</td>
</tr>
<tr>
<td>1-254</td>
<td>anything</td>
<td>+/- fl. pt. #</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>+/- ∞</td>
</tr>
<tr>
<td>255</td>
<td>nonzero</td>
<td>NaN</td>
</tr>
</tbody>
</table>

• Integer mult, div uses hi, lo regs
 • mfhi and mflo copies out.

• Four rounding modes (to even default)

• MIPS FL ops complicated, expensive