Microsoft rolled out a 64 bit version of its Windows operating systems on Monday. As compared with existing 32-bit versions, 64-bit Windows will handle 16 terabytes of virtual memory, as compared to 4 GB for 32-bit Windows. System cache size jumps from 1 GB to 1 TB, and paging-file size increases from 16 TB to 512 TB.

Protocol Family Concept

- **Key to protocol families** is that communication occurs **logically** at the same level of the protocol, called **peer-to-peer**... but is implemented via services at the next lower level.
- **Encapsulation**: carry higher level information within lower level “envelope”
- **Fragmentation**: break packet into multiple smaller packets and reassemble

Protocol for Network of Networks

- **Transmission Control Protocol/Internet Protocol (TCP/IP)**
 - This protocol family is the **basis of the Internet**, a WAN protocol
 - IP makes best effort to deliver
 - TCP guarantees delivery
 - TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN

TCP/IP packet, Ethernet packet, protocols

- Application sends message
- TCP breaks into 64KIB segments, adds 20B header
- IP adds 20B header, sends to network
- If Ethernet, broken into 1500B packets with headers, trailers (24B)
- All Headers, trailers have length field, destination,

Overhead vs. Bandwidth

- Networks are typically advertised using peak bandwidth of network link: e.g., 100 Mbits/sec Ethernet (“100 base T”)
- Software overhead to put message into network or get message out of network often limits useful bandwidth
- Assume overhead to send and receive = 320 microseconds (\(\mu s\)), want to send 1000 Bytes over “100 Mbit/s” Ethernet
 - Network transmission time: 1000Bx8b/B / 100Mb/s = 8000b / (1000b/\(\mu s\)) = 80 \(\mu s\)
 - Effective bandwidth: 8000b/(320+80)\(\mu s\) = 20 Mb/s
Magnetic Disks

- **Purpose:**
 - Long-term, nonvolatile, inexpensive storage for files
 - Large, inexpensive, slow level in the memory hierarchy (discuss later)

Processor (active)

Computer

Control (brain)

Datapath (brawn)

Memory

(passive) where programs, data live when running

Devices

Input

Output

Devices

Mouse

Keyboard

Display

Network

Disk

Printer

Actuator

Moves head (end of arm) over track (seek), wait for sector rotate under head, then read or write

Platter

Several platters, with information recorded magnetically on both surfaces (usually)

Tracks

Bits recorded in tracks, which in turn divided into sectors (e.g., 512 Bytes)

Inner Track

Outer Track

Sector

Head

Arm

Controller

Spindle

Actuator

Disk Device Terminology

Disk Device Performance

Outer Track

Inner Sector

Head

Arm

Controller

Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead

- Seek Time depends on tracks move arm, seek speed of disk
- Rotation Time depends on speed disk rotates, how far sector is from head
- Transfer Time depends on data rate (bandwidth) of disk (bit density), size of request

Data Rate: Inner vs. Outer Tracks

- To keep things simple, originally same # of sectors/track
 - Since outer track longer, lower bits per inch
- Competition decided to keep bits/inch (BPI) high for all tracks ("constant bit density")
 - More capacity per disk
 - More sectors per track towards edge
 - Since disk spins at constant speed, outer tracks have faster data rate
 - Bandwidth outer track 1.7X inner track!

Disk Performance Model /Trends

- **Capacity**: + 100% / year (2X / 1.0 yrs)
 - Over time, grown so fast that # of platters has reduced (some even use only 1 now!)
- **Transfer rate (BW)**: + 40%/yr (2X / 2 yrs)
- **Rotation+Seek time**: – 8%/yr (1/2 in 10 yrs)
- **Areal Density**
 - Bits recorded along a track: Bits/Inch (BPI)
 - # of tracks per surface: Tracks/Inch (TPI)
 - We care about bit density per unit area Bits/Inch²
 - Called Areal Density = BPI x TPI
- **MB$/**: > 100%/year (2X / 1.0 yrs)
 - Fewer chips + areal density

Historical Perspective

- Form factor and capacity drives market, more than performance
 - 1970s: Mainframes ⇒ 14" diam. disks
 - 1980s: Minicomputers, Servers ⇒ 8", 5.25" diam. disks
 - Late 1980s/Early 1990s:
 - Pizzabox PCs ⇒ 3.5 inch diameter disks
 - Laptops, notebooks ⇒ 2.5 inch disks
 - Palmtops didn’t use disks, so 1.8 inch diameter disks didn’t make it
Use Arrays of Small Disks...

- Katz and Patterson asked in 1987: Can smaller disks be used to close gap in performance between disks and CPUs?

Conventional: 4 disk designs

Disk Array: 1 disk design

Replace Small Number of Large Disks with Large Number of Small Disks! (1988 Disks)

<table>
<thead>
<tr>
<th>Capacity</th>
<th>IBM 3390K</th>
<th>IBM 3.5" 0061</th>
<th>x70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>20 GBytes</td>
<td>320 MBytes</td>
<td>23 GBytes</td>
</tr>
<tr>
<td>Power</td>
<td>11 cu. ft.</td>
<td>0.1 cu. ft.</td>
<td>11 cu. ft. 9X</td>
</tr>
<tr>
<td>Data Rate</td>
<td>15 MB/s</td>
<td>1.5 MB/s</td>
<td>120 MB/s 8X</td>
</tr>
<tr>
<td>I/O Rate</td>
<td>600 I/Os/s</td>
<td>55 I/Os/s</td>
<td>3900 I/Os/s 6X</td>
</tr>
<tr>
<td>MTTF</td>
<td>250 Khrs</td>
<td>50 Khrs</td>
<td>??? Hrs</td>
</tr>
<tr>
<td>Cost</td>
<td>$250K</td>
<td>$2K</td>
<td>$150K</td>
</tr>
</tbody>
</table>

Disk Arrays potentially high performance, high MB per cu. ft., high MB per KW, but what about reliability?

Array Reliability

- Reliability - whether or not a component has failed
 - measured as Mean Time To Failure (MTTF)
- Reliability of N disks = Reliability of 1 Disk / N (assuming failures independent)
 - 50,000 Hours / 70 disks = 700 hour
- Disk system MTTF: Drops from 6 years to 1 month!
- Disk arrays too unreliable to be useful!

Redundant Arrays of (Inexpensive) Disks

- Files are “striped” across multiple disks
- Redundancy yields high data availability
 - Availability: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - Capacity penalty to store redundant info
 - Bandwidth penalty to update redundant info

Berkeley History, RAID-I

- RAID-I (1989)
 - Consisted of a Sun 4/280 workstation with 128 MB of DRAM, four dual-string SCSI controllers, 28 5.25-inch SCSI disks and specialized disk stripping software
 - Today RAID is > $27 billion dollar industry, 80% nonPC disks sold in RAIDs

“RAID 0”: No redundancy = “AID”

- Assume have 4 disks of data for this example, organized in blocks
- Large accesses faster since transfer from several disks at once

This and next 5 slides from RAID.edu, http://www.acnc.com/04_01_00.html

PDF created with pdfFactory Pro trial version www.pdffactory.com
RAID 1: Mirror data
- Each disk is fully duplicated onto its “mirror”
- Very high availability can be achieved
- Bandwidth reduced on write:
 - 1 Logical write = 2 physical writes
- Most expensive solution: 100% capacity overhead

RAID 3: Parity
- Parity computed across group to protect against hard disk failures, stored in P disk
- Logically, a single high capacity, high transfer rate disk
- 25% capacity cost for parity in this example vs. 100% for RAID 1 (5 disks vs. 8 disks)

RAID 4: parity plus small sized accesses
- RAID 3 relies on parity disk to discover errors on Read
- But every sector has an error detection field
- Rely on error detection field to catch errors on read, not on the parity disk
- Allows small independent reads to different disks simultaneously

Inspiration for RAID 5
- Small writes (write to one disk):
 - Option 1: read other data disks, create new sum and write to Parity Disk (access all disks)
 - Option 2: since P has old sum, compare old data to new data, add the difference to P:
 1 logical write = 2 physical reads + 2 physical writes to 2 disks
- Parity Disk is bottleneck for Small writes:
 Write to A0, B1 => both write to P disk

RAID 5: Rotated Parity, faster small writes
- Independent writes possible because of interleaved parity
- Example: write to A0, B1 uses disks 0, 1, 4, 5, so can proceed in parallel
- Still 1 small write = 4 physical disk accesses

“And in conclusion...”
- Magnetic Disks continue rapid advance:
 60%/yr capacity, 40%/yr bandwidth, slow on seek, rotation improvements, MB/$ improving 100%/yr?
- Designs to fit high volume form factor
- RAID
 - Higher performance with more disk arms per $
 - Adds option for small # of extra disks
 - Today RAID is > $27 billion dollar industry, 80% nonPC disks sold in RAIDs; started at Cal