5/9/2007

“What’s with all these 1s
and 0s?”

CS61C Final Review

David Poll, Brian Nguyen, Valerie Ishida, Brian Zimmer

Thanks to David Poll, David Jacobs, and Michael Le, Fall
‘06

Final Review, David Poll, Brian
hida, Brian Zimmer

1dda\id18alb6Bhalss to David Jacobs)

1111 1111 1111 1111

'$61C Final Review; David Poll, Brian

/alerie Ishida, Brian Zimmer

They're a two’s complement integer!

“What’s with all these 1s and 0s?”

© 1001 0010 0000 1000

© 1111 1111 1111 1111 B i
It’s negative!

Invert bits and add 1

0110 1101 1111 o111
(-1)x(6x16"7+11X16 A 6-+15X16" 5+7X16" 4+

0000 0000 0000 0001

0x16"3+ 0x16"2+ 0X16™1 + 1X16°0)

g;gm1glﬁ&%@5m
Nguyen, Valerie Ishidabri fer 3

They're a floating point number!

“What’s with all these 1s and 0s?”

Sign Exponent Fraction/Significand
© 100100100 00010001111111111111111

(-1)"M x 1.0001000111...b X 27 (36-127)
=-4.323x10°(-28)

Expressed in binary

Exponent Significand Object

0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/-
255 nonzero NaN
Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 4

They’re a MIPS instruction!

“What’s with all these 1s and 0s?”
opcode 18 rt immediate
© 100100 10000 01000 111111111111111

It's an I-type!
According to your green sheet...
opcode 36— lbu $rt, imm(s$rs)

$16 is $so and $8 is $to

Ibu $to, -1($s0)

Spring 2007 CS61C Final Review, David Poll, Brian

Nguyen, Valerie Ishida, Brian Zimmer 5

They’re 32 separate logical values!

“What’s with all these 1s and 0s?”

The disk isn’t

ready to be read. I showered today

o 1001001000001000111111111111111

;
The stove is on

Interrupts are enabled

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

If there’s one thing you learn...

N bits can represent

2N things

Spring 2007 CS61C Final Review; David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

C and Memory
SThe
Get an n-element array of things

array = (thing *) HEar
malloc(n*sizeof(thing));

Don'’t forget to free it later.
free(array);

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 8

typedef ent * stack;

Problem!

typedef struct node {
int value;
struct node* next;
}ent;

int peek(stack s){
///"g{-\/l'n vy loe

stack pop(stack s,int * val){
Y (eSepr $pRee / ebqape
stack push(stack s,int val){ V74 F('eg er\i‘r; u\“.'

Vs valceg /
(rebda
Jrchy nclvie 0 fentin

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

typedef ent * stack;

Problem!

typedef struct node {
int value;
struct node* next;
}ent;

int peek(stack s){
return s->value;

i

stack pop(stack s, int * val){
ent * temp = s->next;
stack push(stack s,int val){ *val = s->value;
ent * new = (ent *) free(s);
malloc (sizeof(ent)); ~return temp;
new->value = val;
new->next =s;
return new; }

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 10

Memory Management

First fit

e Allocate the first available chunk big enough
Next fit

e Allocate the first chunk after the last one allocated
Best fit

e Allocate the smallest chunk capable of satisfying the
request

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer n

Memory Management

Free List
e Linked list of free chunks, use first/next/best fit
Slab Allocator
¢ Fixed number of 2”n sized chunks, can use a bitmap to
track. Free list for larger requests.
Buddy Allocator
e 2/n chunks can merge with their “buddy” to make a
2°(n+1) chunk. Free list for larger requests.

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer I

5/9/2007

Automatic Memory Management

© Reference Counting & Vo
e Keep track of pointers to each mallocgchurg. ;re&o J
when references = o. -
© Mark and Sweep
e Recursively follow “root set” of pointers, marking
accessible chunks. Free unreachable chunks in place.
¢ Copying
* Split memory into two pieces. Mark reachable chunks as
above, then copy and defragment into other half.

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 3

Saved registers

Prologue

* Sum: addiu $sp, $sp;=

. sw $ra, o($s Argument
. sw $s0; 4($sp) registers
o Dody add $so, $a0;'$0/
. addiu $ao, $ao, -1
3 jal Sum
. addisvolsvonSsom i \l}:lt:em
Fpilogue lw $s0, 4(8$sp)
. Iw $ra, o($sp)
. addiu $sp, $sp, 8 Return
° jr $ra address
Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 14

Push:
* typedef struct node {
. int value; // offset o 1i $a0, 8
. struct node* next; //offset 4 jal malloc
* }ent; a
T l.p»kﬂur!

o stack push(stack s, int val){ @ ~Dave
3 ent * new = (ent *) (=3
. malloc (sizeof(ent)); é yes,
. new->value = val;
3 new->next = s; jr $ra
o return new;
e

Spring 2007 CS61C Final Review, David Poll, Brian

Nguyen, Valerie Ishida, Brian Zimmer 15

Push: addiu $sp, $sp, -12

Problem! iy i

sw $a0, 4($sp)

* typedef struct node { sw $al, 8($sp)
. int value; // offset o 1i ga@, 8
o struct node* next; //offset 4 jal malloc
* }ent; 1w $a0, 4($sp)
1w $a1, 8($sp)
e stack push(stack s, int val){ sw $a@, 4($ve)
. ent * new = (ent *) sw $al, @($ve)
o malloc (sizeof(ent)); 1w $ra, @($sp)
. new->value = val; addiu $sp, $sp, 12
3 new->next =s; jr $ra

return new;

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 16

|C program: foo.c |
ML | Compiler P

|Assembly program: foo.s |

CALL

= Assembler M
|Object(rnach lang module): foo.o |
L re— Linker [g—ZC | L0

|Executable(mach lang pgm): a.out |

Loader

Spring 200, PN P it Pol], Brian
Nguyen, Valefie Ishkth, 7

Ok, | get it. But how does
it work?!

Brian Zimmer

7 CS61C Final Review, David Poll, Brian
yyen, Valerie Ishida, Brian Zimmer

SDS Review

5/9/2007

Boolean Equations

Truth Tables

Truth Table to Expression/

. . . AlLE LS] E 1) Find all rows that have a “1” in
 Explicit declaration of a Boolean function for all values Sl o oG < e
of inputs — the output
o Can use to derive a more compact analytical equation 5 1t o o 2) Incorporate these rows into a
* Sum of Products: o |1 |t |t |] boolean equation, replacing the
« Find all rows in which outputisa1 1]) 1 column heading with its
« Each row will be a term that is ORed with all other row terms a 7 1 a i if th g h i
« Foreach row term, Input bit i is negated if it isa o in that row, negationif the row hasa o in
otherwiseit appears as normal 1 1 0 1 that cell
R R
First Row: AB'C The Whole Equation:
AB'C + ABC + ABC + ABC + ABC + ABC
Second Row: AB'C
Question S1 Answer S1

* How many gates are there for a Boolean function
of m inputs and n outputs?

* How many gates are there for a Boolean function
of m inputs and n outputs?

e Number of rows = 2 m

e Total number of bits to fiddle with = number of
rows * output bits per row = n * 2 m

e Total number of functions = 2 (Number of bits to
fiddle with)

* 2"(n*2%(m))

5/9/2007

Boolean Equation Minimization

* That equation we just got was gross
e (AB'C+A'BC + AB'C’ + AB'C + ABC’ + ABC)
© There’s probably a better way to represent
¢ Use Laws of Boolean Algebra
* Also
e Can help to verify if two functions are the same (they’ll
minimize to the same thing)
» Reduces complexity of hardware (most of the time,
there are several factors to this...)

Laws of Boolean Algebra

z:E=0 z+T=1 complementarity
z-0=0 r+1=1 laws of 0’s and 1’s
z-l=w z+0=2 identities
z-r==x rz+r=1x idempotent law

T Yy=y-x zt+y=y+zc commutativity

(zy)z = z(yz) (z+y)+z=x+ (y+z) associativity
z(y+z)=zy+wz w+yz=(x+y)(x+z) distribution
zyt+r==x (z+y)r==x uniting theorem
T Yy=T+7y (z+y)=T-7 DeMorgan’s Law

Working It Out

AB'C +ABC +AB'C’ + AB'C + ABC’ + ABC

(AB'C + AB'C) + (ABC + ABC) + (AB'C’ + ABC’) Associativity
B'C (A +A)+BC (A +A)+AC’ (B’ +B) Distributivity
B'C + BC +AC Complimentarity
C (B’ +B)+AC Distributivity
C+AC Complimentarity
(C+AC) +AC Uniting Theorem
C+A(C+C) Distributivity
C+A Complimentarity

We're Done! Look at how simple that is!

Components of Digital
Systems

Components of Digital Systems

 Devices really built out of transistors, and transistors
out of pn-junctions, but we restrict our attention to
logic gates as the most fundamental building blocks.

* We can build up more complex blocks from these.

Building Blocks (1)

o ab

]—— [00

AND b 01
a. ab

— 00

OR b 01

NOT

5/9/2007

Buildine Rlarks (2)

v e
fqu])
o)y

XOR

NAND

NOR

COD—|G O'—'——‘h = k!

ber lany

(“! !c... -
Snat

Question S2

* You have 1 of each: mux, OR, NOT.
* How can you represent:

e Blah=A*C+B*C+A*B*C
* With only these components?

b Clnt

’ i
owrflow

Answer S2

 Rearrange the Equation:
e C*(A+B)+A*B*C

© A+B - use the OR

* A * B -use NOT on A+B
* DeMorgan’s Law

© Last step is tricky

¢ Use each of last two as inputs to the mux, with C as the

selection bit

Timing Diagrams

5/9/2007

Timing Diagrams
° Why?

e All real components have delays associated with them
« Help to show causality in a circuit
« Make sure you meet timing constraints

¢ Different parts of complex systems need to “handshake”
somehow

« Timing Diagrams VERY useful for showing the intricacies of such
handshakes

¢ They're what you get when you have to debug a circuit

R eg‘l (S;ﬁll:g :[glm Ln gmbinational logic, must respect setup

and hold times.
© Setup:
o T(clk-to-q)+T(CL)+T(setup) < T(clock)
* Hold:
¢ T(clk-to-q) + T(CL) > T(hold)
o If T(clk-to-q) > T(hold) then don't need to worry

K — < Tnpot data raust be shable
WS Penc.&

e st i
& _Jim e e

e—— "clk-to- '." J‘dm}

Accumulator Timin&
i 1 shown.

* reset sig]

« Also, in practice X might not arrive to
the adder at the same time as S;,

« S; temporarily is wrong, but register
always captures correct value.

« Ingood circuits, instability never
happens around rising edge of clk.

-~ k=T

ax LU
S 770 ﬂ}p Tako-g,
* @ % XY K X X)

Si Ko D(Xet¥o [k

Finite State Machines

Finite State Machines

* Combinational Logic + State Elements

o State Elements essentially keep track of what has been
seen so far

* Combinational Logic used to determine what the next
state and current output are

; —> o F——»
inputs % oupus
—p outputs

r‘ =
’—D > n

state feedback

~ANEC Fiwaal 1A)
We are designing a circuit with a 1-bit input (r(+)) and a 2-bit output (o)), that will produce, at time
t, the number of zeros in the set yT(v-2), 1(t-1), T(t)}. As an example,

the input: 1: 1100100110111000
.willproduce theoutput: 0: 0 01 2222211110123

a) Complete the FSM diagram below. Our states have been labeled sxy
indicating that the previous 2 bits,(r(t-2z), 1(t-1)) would be (x, y)
Fill in the truth table on the right. The previous state is encoded in
(r1,r0), the next state is encoded in (x1,50), and the output is encoded
as (01,00). Make sure to indicate the value of the output on your state
transitions.

SIENERED

5/9/2007

Answer (a)

PP1 0O NN (Input/Output label for edge) [#ZI(ABC) = NumberOfZerosIn(P1,Po,1)]
1010 10
Soo o0 -> 11 Soo (0/3) # Had two os, another one means we stay here and output
S001-> 10 So1 (1/2) # This is our first 1 in a while, register we've seen a1 by
setting I(t-1) to1 (i.e., So1) and output #ZI(oo01)=2
So1 0 -> 10 S10 (0/2) # Saw a o1 before but this 0 means we goto S10 and output
#Z1(010)=2
Sot1-> o1 S (1/1) # This is the 2nd 1in a row, go to Sn and output #ZI(on)=1
S10 0 -> 10 Soo (0/2) # Saw a1 2 timesteps ago, nothing since. Goto Soo,output
#Z1(100)=2
S101-> o1 So1 (1/1) # Saw a1 2 timesteps ago, a1 now. Goto o1, output #ZI(101)=1
Su o -> o1 S10 (0/1) # Saw 2 straight 1s, now a 0. Goto S10, output #ZI(110)=1
Su1-> 00 Su (1/0) # Everything is coming up 1s! Stay here (in Sn), output
#Z1(m)=0

Answer (a)

1/0

SDS on Fa05 Fina

(b)

b} Provide fully reduced i.e., fewest gates to implement...you can use any n-input gates)
Boolean expressions for the Output (01,00) and Next State (x1,m0) bits. If there is a name for
any of the circuits, wrile it cn the lefi. E.g., “The always-1", “3-input NAND", etc. A 2-input XOR
has the symbol of @’

Scratch space

Answer (b)

‘We'll do the easier ones first. Looking at the truth table (not doing the mindless
sum-of-products

calculation), we see:

No=I

Ni=Po

There are no names for these circuits. Let’s now look at O1and Oo. If were
extremely clever, we remember the two bit patterns for an adder’s two output
bits:

Or is a minority circuit and Oo is a 3-input xnor. Let’s see if we can figure that out
even if we don't remember these facts. Let’s study the truth table and look at
the negative spaces (the times when the output is zero). We see when P1 is o
Qo looks like xnor(Po,I) = ~(Po XOR I). When P1 is 1 Oo looks like xor(Po,I) =
(Po XOR I). That is, Po XOR I is being conditionally inverted by P1, which is
what an xor does! From this, we see that

Oo = ~[P1 XOR (PO XOR I)], i.e. the post-negation of two cascaded xors, which is
the same as a 3-input xnor!

Answer (b)

Ou s a little harder. We can still study the table and see some patterns. That is, when P1 = o,
looks]like nand(Po,I) = ~(Po*I). When P1=1, O1 is like a nor(Po,1) = ~(Po+1). This yields
O1=Pr*(Po*I)’ + Pr*(Po+I)’

=Pr*(PO™+I') + Pr*(Po™I') # DeMorgan's law

=Pr’ Po’ + Pr' I + P’ Po’ I’ # distribution

Recall the following distributive+law-of-1s+identity simplification?

A+AB=A(1+B) =A(1) =A

Well, we can run it backwards. That is, we can start with A and generate A+AB.

‘We do that here with ~PI~Po:

Pr' Po’ = Pr' Po'(1) = P1’ Po'(1+I') = Pr’ Po’ + P’ Po’ I’
So that means our three terms for O1 are now four:

Answer (b)

O1=P1r Po’+Pr'T' + P1Po’ I # from above

O1=P1r Po’'+Pr'T' + P1Po’I' + P’ Po’ I’ # distributive+law-of-1s+identity
O1=Pr' Po’ + P1' I + (P1+P1')Po’ I # distribution

O1=P1r Po’ +Pr' I + (1)Po’' I’ # complementarity

O1=P1r Po’+ Pr'T' + Po’ I # identity

O1 = (P1Po + Pil + Pol)’ # lots more Boolean algebra!
...a NotMajority, or AntiMajority, or Minority circuit!

5/9/2007

—
CNC An EaNE Final (~) Answer (c)
c) Draw the overall circuit using the fewes! gates possible with and without feedback below. The feedback circuit is the standard synchronous digital systems model we've seen several times,
‘You may add registers. “Feedback” means outputs are somehow fed back into inputs. where the output is passed through flip-flops and sent back to the input
Assume we've correctly implemented the answer to (b) as a black box in the middle.
With feedback Without fesdback The non-feedback cireuit we haven't seen before. However, from the problem deseription we know
that sx and sy (i.e.. p1 and po) are really just time-delayed versions of the inputs, Le.. po=r(t-1)
1 T o1 I I oL 1 and p1=1t-2), we have the answer on the right
- oo oo T
el 31
1 L 0 With feedback Without feedback
#ol o P0 o
1 ol 1 1 0l
| Rt . L
| o L |
00 | il
L NO
— —

CS150 Lab Problem (1)

You will be making an 8bit, 2 digit combination
lock such as those sometimes found on secure
doors. The inputs to the lock consist of a code
switch and two buttons. The code switch is used
to enter the digits in the combination. The two
buttons are Reset which is used to reset the lock
and Enter which is used to enter a digit of the
combination

The comparison of the current input to each digit

will be provided on two wires for you, Decode1 and
Decode2

CS150 Lab Problem (2)

To operate the lock, a user would:
¢ 1. Set the code to the first digit and press Enter.
2. Set the code to the second digit and press Enter.
¢ 3. The lock will Open.
¢ 4.The user would then press enter (SW2).
¢ 5. Set the code to the new first digit and press Enter.
* 6. Set the code to the new second digit and press Enter.
¢ 7. Cycle back to step 3 above...
When someone gets the combo wrong it would go like this:
¢ 1. Set the code to a wrong digit and press Enter.
2. Set the code to any digit (right or wrong) and press Enter
¢ 3. The lock will show Error
* 4. The lock will stay in this state until the user presses Reset.

State Diasram

TN
P Ly
i T
Y. B . -
oK1 BAD1
Decue 28 Dacoted e
e Dezn2& B
fok2 W ¥ BAD2 |
| open Frier [
=
e
* \ Ve
Progt |, Prog2
[Progn} [Proo2)

State Diagram

Init

Decoe 1 8 |
Erder

| ~Decode1 &
Erter
W
BAD1

“Decockez & Erter
Erer

¥ BAD2 |
e

State Encoding
Init=o
OKi=1
OK2=2
Progi1=3
Prog2 = 4
BAD1=5
BAD2=6

5/9/2007

Boolean Expressions

NS2 = (PS2’ * PSt’ * PSo’ * Decoder’ + PS2’ * PSt’ * PSo * Decode2’ +
PS2’” * PS1 * PSo + PS2 * PS1” * PSo + PS2 * PS1 * PSo’) * Enter + NS2 *
Enter’

Truth Table

Decodel | Decode2 |PS2 |PS1 |PSO |NS2 | NS1 | NSO | Open | Error
0

NS1 = (PS2’ * PSt’ * PSo * Decode2’ + PS2’ * PS1” * PSo * Decodez + PS2’
PS1 PSo’” + PS2 * PSt” * PSo’ + PS2 * PS1’ * PSo + PS2 * PS1 * PSo’) *
Enter + NS1 * Enter’

.

NSo = (PS2’ * PS1’ * PSo * Decoder’ + PS2” * PS1’ * PSo * Decoder + PS2’
*PS1 * PSo’) * Enter + NSo * Enter’

XX |X[X|X[X|X|X|r|O
X[X|X|[X|X|[X|r|Oo|X|X
wlelrlr]olele]e|ele
wlrlelelr[rle]elele
wlolrlelrlelr]r[eole
x|m[rlelrlele]r[eo]+
x|m[r[r]lo[r[r]r[eo]e
x|o|ole]o[r[o]o|-]r
x|o|ole]o[r[o]e|e]e
X | |o|lo|o|o|o|o|o

Open = PS2” * PS1 * PSo’

Enter is a necessary condition for all state transitions
Reset will always cause NS to be Init

Error = PS2 * PS1 * PSo’

Tasks a CPU must do

e Fetch an instruction =

Slngle CVCIE CPU DeSlgn ¢ Decode the instruction D

¢ Getvalues from registers and set control lines
Brian Nguyen (Thanks to David Jacobs) ¢ Excciite instruction (ar\ LL’—M}'@S A
* Meddle with Memory, if necessary M
© Record result of instruction (-
e a.k.a. register write back

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 7

Building/Extending a CPU Datapath Applying Those Steps

° Determine what function you want to do * If I have the following C code:
» I'want to support adding of two registers

* Determine what you have to work with . P=Z+4;
« I have registers, muxes, gates, and lots of wires
© Formulate a plan of bringing data from where it is ¢ Converting it to MIPS would produce
found to where it is needed
« Ineed to move data from registers to an ALU ° addi sto, z, 4
» Execute your plan . sw sto, o(p)

* Determine Control Signals

* Let’s suppose you want to do this in 1 instruction

Spring 2007 CS61C Final Review, David Poll, Brian Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 7 Nguyen, Valerie Ishida, Brian Zimmer 7

10

Step 1 — Determine function

Spring 2007 CS61C Final Review; David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

Step 1 — Determine function

I want to add two values and store them into memory

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 76

Step 1 — Determine function

I want to add two values and store them into memory

Asa guidance, lets layout what the datapath must do
2
iy 3
5. Mem[R[rs]] = R[rt] +‘éignExtImmed

W) > Cenislec Feomslihon 'ﬂnﬁuag,e,

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 7

Step 2 — Determine what is
available

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 78

Step 2 — Determine what is
available

Instruction<31:0>

Instruc tion|
Fetch Unit

RegDst

/alerie Ishida, Brian Zimmer 79

Step 3 — Formulate Plan

5/9/2007

11

5/9/2007

Step 3 — Formulate Plan Step 4 — Execute Plan

* Add R][rt] to SignExtImmed
* Send R[rt]+SignExtimmed to Memory Data
* Send R[rs] to Memory Addr

Spring 2007 CS61C Final Review; David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 8

Spring 2007 CS61C Final Review, David Poll] Brian
Nguyen, Valerie Ishida, Brian Zimmer 82

Step 5 — Set Control Lines Things to Keep in Mind

Control value Control Value There is more than one way to modify datapath to
produce same result

nPC_sel normal ExtOp Sign
¢ If you split a line leading into an input, you need to use
RegDst X MemWr 1 2 mux.
. ¢ Send original line int
RegWrite 0 MemToReg X M
¢ Send new line into 1

ALUCHrl X MemDataSrc 1
ALUSrc X MemAddrSrc 1

Sprme= < g - Spring 2007 CS61C Final Review, David Poll, Brian

Nguyen, Valerie Ishida, Brian Zimmer 83 Nguyen, Valerie Ishida, Brian Zimmer 84

Pipelining Problems

¢ Hazards

H M e Structural: Using some type of circuit two different ways,
Plpe“nlng at the same time
Valerie Ishida (Thanks to Michael Le) e Data: Instruction depends on result of prior instruction

 Control: Later instruction fetches delayed to wait for
result of branch

CS61C Final Review, David Poll, Brian
rie Ishida, Brian Zimmer

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 86

12

5/9/2007

Solving Hazards

Structural
¢ add hardware, use other properties

Control
e do things earlier such as with branches

« delayslot compromise
CP“ ‘C’.)fu'o\ +° ér"o,p
/ .
Data hs@“"’— ‘QM‘ N'\rd‘lnﬂ
e use forwarding, interlocking at worst case

Spring 2007 CS61C Final Review; David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 87

Data Dependencies and

Forwarding

Data Dependency

¢ Needing data at decode when updated data has not
reached register write back

s
Yo

Forwarding Corward Wj?

¢ moving data from one stage to another
« Exception is R to D - not considered forwarding because no)
new wire is laid down o becamwse Pnan
wive laid down

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 88

Two methods for determining
data dependencies and forwarding

If arrows are drawn starting from end (right side) of R
to stage where data is needed in a later instruction,
then the arrow represents data dependency

dvaun
If arrows are e+ starting from when data is first

Arrow Drawing Guidelines
(for method 2)

Only draw arrow only if R of updated value of
register does not line up on top to the left of D

+ Arrows should never span more than 3
instructions (red arrow bad)

available (right side of stage) to where data is addi $t0, $t0, 0 F D A\WM
absolutely needed (left side of stage), arrow represents add Selllisen i ise) F oD OAM\ R
data dependency and forwarding possibility sub $t2, $tl, $a0 F p/a\M R
and $t3, $t0, $al D M R
ori $t4, $t0, Stl B DEAMR
Spring 2007 CS61C Final Review, David Poll, Brian Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 89 Nguyen, Valerie Ishida, Brian Zimmer 90
g —=

Pitfalls in arrow drawing

Pay attention to how registers are used
* Notall instructions update registers (i.e. sw)

Some instructions use registers two different ways
 lw/sw uses one register for address, the other for data

Method #1 generally has arrows going left
» Arrow going to the right means no data dependency

Method #:2 generally has arrows going right;
 Arrow going to the left for #2 means forwarding won't help;
meaning you must stall the pipeline (i.e. do interlock)

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 9

Branch Delay Slot

Any instruction that follows a branch instruction
occupies that slot

That instruction is executed 100% of the time, unless
we have advanced pipelining logic (pipeline flushing,
out of order execution, etc).

Unless we tell you otherwise, there is NO advanced
pipeline logic.

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 9

13

5/9/2007

Infamous Example Infamous Example
How many clock cycles addi $1, $o, 2 addi $1, $o0, 2 1
}V(l’luld,lt takilto ilinfih'efth loop: add $o, $o, $0 loop: add $o, $o, $o 2,10
ollowing code at left, if the
pipelined MIPS CPU had beq $1, $0, done beq $1, $0, done 31
all solutions to control and add s$4, 83, 52 add $4, $3, $2 4,12
data hazards as discussed add $s, $4, $3 add $s, $4, $3 5
{n céass (blrankch delay slot, add $6, 5, $4 add $6, $5, $4 6
int , regist ; :
fgi'lwéllll}d?;g())% TEoiier addi $1, $1, -1 addi $1, $1, -1 7
beq $o, $o, loop beq $o, $o0, loop 8
addi 1, $1, -1 addi $1, $1, -1 9
done: beq $o, $o, exit done: beq $o, $0, exit 13
addi $1, $o, 3 addi $1, $o, 3 14
exit: addi $1, $0, 1 exit: addi $1, $0, 1 15, 16, 17,18, 19
07 CS61C Final Review, David Poll, Brian Spring 2007 CS61C Final Review, David Poll, Brian
Jalerie Ishida, Brian Zimmer 9 Nguyen, Valerie Ishida, Brian Zimmer 94

Infamous Example

addi $1, $o, 2 1
loop: add $o, $o, $o 2,10

beq $1, $0, done pil

add $4, $3, $2 4,12

add $5, $4, $3 5
add $6, $5, $4 6 19 Cycles
addi $1, $1, -1 7
beq $o0, $0, loop 8
addi $1, $1, -1 9
done: beq $o, $o, exit 13
addi $1, $o, 3 14

exit: addi $1, $0, 1 Pipeline Drain 1617738719

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

95

More Pipelining Practice

How many cycles are loop:
needed to execute the [1] add sao, sao, $t1

following code: [2] @ $a1, o($ao)
+ CPUhas [3] add say, sa1, $t1

- no forwarding units
will interlock on any hazard [4] sw $ai, 0($t1)
[5] add st, st1, -1

- nodelayed branch
- 2nd stage branch compare
- instructions are not fetched until chpa]?QEa%Qe[%o’ end
\—r memory CAN be read/written oft t[l?]samkiystg, $tg, 1

same registers CAN be read/written on the same cycle

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

96

More Pipelining Practice
i1y1y1111y
12845678p50912345678

[1] FDAMR

[2] FDDDAMI

3] F| |DAMR

[4] F| DAMR

[5] HDAMR

[6] FDAMR

(7] FDAM

Nguyen, Valerie Ishida, Brian Zimmer

97

More Pipelining Practice

How many cycles are loop:
needed to execute the [1] add sao, sao, $t1
following code: [2] Iw sa1 o(sa0)

- CPU has [3] add say, $a1, $t1

- all forwarding units
— will interlock on any hazard [4] sw sa1, o(st1)
[5] add sti, $ti, -1

- delayed branch

- 2nd stage branch compare
memory CAN be read/written on theLélnebcr)}cqeso’ $o, end
- same registers CAN be read/writtefrzln aﬁdaﬁxgg&tg, 1

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

98

14

More Pipelining Practice
o 111
° 128456780012
*1] FDAMR
*[2] FDAMR
°[3] F DAMR
o [4] FDAMR
5} FD-AMH
* [6] FDAMR
o FDAMR
Nguyen, Valerie Ishida, Brian Zimmer 99

What else? (Caches/VM)

Brian Nguyen (Thanks to David Poll)

C Final Review, David Poll, Brian
ishida, Brian Zimmer

5/9/2007

Caches

° W'hy? Register
i ——
* Write-back Tamporary

Example

VM Cache

1 MiB Virtual Memory Space,
32 KiB Physical Memory

¢ 32 KiB Addressable Memory,
1KiB Cache Size,

Storage . . i
) RAM Aroas 4 KiB Page Size 128 B Block Size,
© Write-through vupsiat ad |l Vit Momary * 0x0000C LRU Replatement,
* Replacement ox200Do 2-way set associative
Permanent
5 3 . 0X10000 * oxoo0oC
* Hit/Miss s ey
ox202Do oxioDo
ox200D8 0X2000
Image from ox204Do ox1zDo
HowStuffWorks.com oxi10D8
oxi4Do
Spring 2007 CS61C Final Review, David Poll, Brian Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 101 Nguyen, Valerie Ishida, Brian Zimmer 102

VM ‘
. Why7 lacﬁ'l’nL:nl
* VPNvs. PPN

o Page Fault ; ;:::l;;-:ry

RAM Arcas

* Page in, Page out Pricn aam

Virsual Memory

Permanent
Storage
Areas

Image from
HowStuffWorks.com

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 103

VM/Caches

* What happens when we switch processes?
* Problem with Page Tables? (where are they?)
° AMAT
o AMAT = Hit Time + (Miss %) x (AMAT for Miss)

¢ Give an expression for AMAT of a system with VM (with
TLB) and Cache

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 104

15

What else? (Final
Potpourri)

Valerie Ishida (Thanks to David Poll)

'S61C Final Review; David Poll, Brian
ie Ishida, Brian Zimmer

5/9/2007

Performance

¢ CPU Time (CPI)
* Example:
¢ Memory Read -10%, CPI =18
¢ Memory Write - 15%, CPI = 20
e ALU - 30%, CPI =1
e Branch - 45%, CPI =2
¢ Overall CPI?
¢ CPU Speed =1 GHz, 1 Million instructions, CPU Time?
¢ Cacheadded. Memory Read/Write halved. Improvement?
* Megahertz Myth
¢ What determines performance?

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

1/O

* Polling

e Are we there yet?
* Interrupts

* Wake me when we get there.
° Memory Mapped 1[/O

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

Networks

e Sharing vs. Switching
* Half-duplex vs. Full-duplex

* Packets Packet - E-mail Example
e Payload . o
e Trailer
° Ack?
» TCP/IP o e e

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

108

Disks

 Latency:
» Seek Time + Rotation Time + Transfer Time + Controller
Overhead

Outer Innersector
Track Track

AN

Platter:

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

RAID

* RAID-o
e Striped
* RAID-1

* Mirrored

* RAID-4 @% t
« Striped, parity drive %-% /@
28 8

* RAID-5
Spring 2007 CS61C Final Review, David Poll, Brian

e Striped, striped parity
Nguyen, Valerie Ishida, Brian Zimmer

16

5/9/2007

Parallelization
* Why? Conclusion
* Distributed Computing

* Parallel Processing
* Amdahl’s law

e Time >=s +1/p

e Speedup <= 1/s

Questions on the Fa-o5 Final?

Spring 2007 CS61C Final Review; David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

iew, David Poll, Brian
n Zimmer

17

