

"What's with all these 1s

 and 0s?"1deqvidiBadb65haoks to David Jacobs)
1111111111111111

They're a floating point number!
They're a two's complement integer!
"What's with all these 1s and Os?"
"What's with all these 1s and 0s?"
Sign Exponent Fraction/Significand

- 1001001000001000
- 1111111111111111 It's negative!

Invert bits and add 1
0110110111110111
$(-1) \times\left(6 \times 16^{\wedge} 7+11 \times 16^{\wedge} 6+15 \times 16^{\wedge} 5+7 \times 16^{\wedge} 4^{+}\right.$
0000000000000001 ox16^3+ ox16^2+ ox16^1 $+1 \times 16^{\wedge}$ o)

- 10010010000010001111111111111
$(-1)^{\wedge} 1 \times 1.0001000111 \ldots \mathrm{~b} \times 2^{\wedge}(36-127)$
$=-4.323 \times 10^{\wedge}(-28) \quad$ Expressed in binary

They're a MIPS instruction!
"What's with all these 1s and Os?"

- $100100 \quad 10000 \quad 11111111111111$

It's an I-type!
According to your green sheet... . opcode $36 \rightarrow$ lbu \$rt, imm(\$rs) $\$ 16$ is $\$$ so and $\$ 8$ is $\$$ to
lbu \$to, -1(\$so)
"What's with all these 1s and 0s?" The disk isn't

The stove is on
Interrupts are enabled

If there's one thing you learn...

N bits can represent $2^{\wedge} \mathrm{N}$ things

C and Memory

- Get an n-element array of things
- \quad array $=($ thing $*)$
- malloc(n*sizeof(thing));

- Don't forget to free it later.
- free(array);
ack pop(stack s,int * val)\{
lifrea entry ontop
I/ retura the next
\}
- \}

Memory Management

- Free List
- Linked list of free chunks, use first/next/best fit
- Slab Allocator
- Fixed number of $2^{\wedge} n$ sized chunks, can use a bitmap to track. Free list for larger requests.
- Buddy Allocator
- $2^{\wedge} \mathrm{n}$ chunks can merge with their "buddy" to make a $2^{\wedge}(\mathrm{n}+1)$ chunk. Free list for larger requests. request

Automatic Memory Management

- Reference Counting
- Keep track of pointers to each malloc'dshunks. Fre when references $=0$.
- Mark and Sweep
- Recursively follow "root set" of pointers, marking accessible chunks. Free unreachable chunks in place.
- Copying
- Split memory into two pieces. Mark reachable chunks as above, then copy and defragment into other half.

Ok, I get it. But how does

it work?!
Brian Zimmer

Truth Tables

- Explicit declaration of a Boolean function for all values of inputs
- Can use to derive a more compact analytical equation
- Sum of Products:
- Find all rows in which output is a 1
- Each row will be a term that is ORed with all other row terms
- For each row term, Input bit i is negated if it is a o in that row, otherwise it appears as normal

Truth Table to Expression

1) Find all rows that have a " 1 " in the output
2) Incorporate these rows into a boolean equation, replacing the column heading with its
negation if the row has a o in that cell

First Row: A'B'C
Second Row: $\mathrm{AB}^{\prime} \mathrm{C}$

The Whole Equation:
$A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C$

Question S1

- How many gates are there for a Boolean function of m inputs and n outputs?

Answer S1

- How many gates are there for a Boolean function of m inputs and n outputs?
- Number of rows $=2^{\wedge} \mathrm{m}$
- Total number of bits to fiddle with = number of rows * output bits per row $=n$ * $2^{\wedge} \mathrm{m}$
- Total number of functions $=2^{\wedge}($ Number of bits to fiddle with)
- $2^{\wedge}\left(n^{*} 2^{\wedge}(m)\right)$

Boolean Equation Minimization

- That equation we just got was gross
- $\left(A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C\right)$
- There's probably a better way to represent
- Use Laws of Boolean Algebra
- Also
- Can help to verify if two functions are the same (they'll minimize to the same thing)
- Reduces complexity of hardware (most of the time, there are several factors to this...)

Laws of Boolean Algebra

$x \cdot \bar{x}=0$	$x+\bar{x}=1$	complementarity
$x \cdot 0=0$	$x+1=1$	laws of O's and 1's
$x \cdot 1=x$	$x+0=x$	identities
$x \cdot x=x$	$x+x=x$	idempotent law
$x \cdot y=y \cdot x$	$x+y=y+x$	commutativity
$(x y) z=x(y z)$	$(x+y)+z=x+(y+z)$	associativity
$x(y+z)=x y+x z$	$x+y z=(x+y)(x+z)$	distribution
$x y+x=x$	$(x+y) x=x$	uniting theorem
$\overline{x \cdot y}=\bar{x}+\bar{y}$	$(x+y)=\bar{x} \cdot \bar{y}$	DeMorgan's Law

Working It Out

```
A'B'C + A'BC + AB'C' +AB'C + ABC' + ABC
(A'B'C+AB'C)+(A'BC+ABC)+(A\mp@subsup{B}{}{\prime}C'}+AB\mp@subsup{C}{}{\prime}
B'C (A' +A) + BC (A' +A) +AC'(B'+B)
    Distributivity
B'C+BC+AC' Complimentarity
C(B'+B)+AC' Distributivity
C + AC' Complimentarity
(C+AC)+AC' Uniting Theorem
C+A(C + C') Distributivity
C +A Complimentarity
```

We're Done! Look at how simple that is!

Components of Digital Systems

- Devices really built out of transistors, and transistors out of pn-junctions, but we restrict our attention to logic gates as the most fundamental building blocks.
- We can build up more complex blocks from these.

Building Blocks (1)

AND b OR

Muxes

Question S2

- You have 1 of each: mux, OR, NOT.
- How can you represent:
- Blah = A * C' + B * C' + A * B' * C
- With only these components?

Answer S2

- Rearrange the Equation:
- C' * $(A+B)+A^{\prime}{ }^{\prime} B^{\prime *} C$
- $\mathrm{A}+\mathrm{B}$ - use the OR
- A' * B' - use NOT on A+B
- DeMorgan's Law
- Last step is tricky
- Use each of last two as inputs to the mux, with C as the selection bit

Timing Diagrams

- Why?
- All real components have delays associated with them
- Help to show causality in a circuit
- Make sure you meet timing constraints
- Different parts of complex systems need to "handshake" somehow
- Timing Diagrams VERY useful for showing the intricacies of such handshakes
- They're what you get when you have to debug a circuit

Requisterifg registers and combinational logic, must respect setup and hold times.

- Setup:
- T(clk-to-q)+T(CL)+T(setup) < T(clock)
- Hold:
- T(clk-to-q) $+\mathrm{T}(\mathrm{CL})>\mathrm{T}($ hold $)$
- If T(clk-to-q) > T(hold) then don't need to worry

CLK

d

q

Finite State Machines

- Combinational Logic + State Elements
- State Elements essentially keep track of what has been seen so far
- Combinational Logic used to determine what the next state and current output are

state feedback

C DC
We are designing a circuit with a 1 -bit input $(1(t)$) and a 2 -bit output (o($t)$), that will produce, at time t , the number of zeros in the set ${ }_{\{(\mathrm{I}-2), I(\mathrm{t}-1), I(\mathrm{t})\} \text {. As an example, }}^{\text {, }}$
the input:

a) Complete the FSM diagram below. Our states have been labeled $s x y$ indicating that the previous 2 bits, $(I(t-2)$, $I(t-1)\}$ would be $\{x, y$,
Fill in the truth table on the right. The previous state is encoded in ($\mathrm{P} 1, \mathrm{p} 0$), the next state is encoded in ($\mathrm{N} 1, \mathrm{~s} 0$), and the output is encoded as $(01,00)$. Make sure to indicate the value of the output on your state transitions.

Answer (a)

PP I OO NN (Input/Output label for edge) [\#ZI(ABC) $=$ NumberOfZerosIn $\left(\mathrm{P}_{1}, \mathrm{Po}, \mathrm{I}\right)$] 101010

Soo o -> 11 Soo ($0 / 3$) \# Had two os, another one means we stay here and output \#ZI(ooo)=3
Soo 1 -> 10 Sol ($1 / 2$) \# This is our first 1 in a while, register we've seen a 1 by \# setting $\mathrm{I}(\mathrm{t}-1)$ to 1 (i.e., Sol) and output \#ZI(oor)=2
Sol o -> $10 \mathrm{Sio}(\mathrm{O} / 2)$ \# Saw a or before but this o means we goto Sio and output \#ZI(oor)=2
Sol 1 -> or Sn1 ($1 / 1$) \# This is the 2nd 1 in a row, go to Sin and output \#ZI(oni)=1 Sio o -> 10 Soo (o/2) \# Saw a 12 timesteps ago, nothing since. Goto Soo,output \#ZI(100)=2
Sio $1->01$ Sol (1/1) \# Saw a 12 timesteps ago, a 1 now, Goto or, output \#ZI(101)=1 Sil o -> ol Sio (o/1) \# Saw 2 straight is, now a o. Goto Sio, output \#ZI(nio)=1 Sil $1 \rightarrow$ oo Sn ($1 / \mathrm{o}$) \# Everything is coming up 1s! Stay here (in Si1), output

Answer (a)

SDS on Fa05 Final (b)

b) Provide fully reduced (i.e., fewest gates to implement...you can use any n-input gates) Boolean expressions for the Output (01,00) and Nex期 has the symbol of " \oplus ".

Scratch space
\qquad $01=$
\qquad $00=$
${ }^{2} 1=$
\qquad so $=$

Answer (b)

We'll do the easier ones first. Looking at the truth table (not doing the mindless sum-of-products
calculation), we see
No=I
$\mathrm{N}_{1}=\mathrm{Po}$
There are no names for these circuits. Let's now look at O_{1} and Oo. If we're extremely clever, we remember the two bit patterns for an adder's two output bits
O_{1} is a minority circuit and Oo is a 3 -input xnor. Let's see if we can figure that out even if we don't remember these facts. Let's study the truth table and look at Oo negative spaces (the times wher ($\left.\mathrm{Po}_{0} \mathrm{I}\right)=\sim\left(\mathrm{Po}_{0}\right.$ XOR I). When P_{1} is 1 Oo We see when P_{1} is o (Po XOR I). That is, Po XOR I is being conditionally inverted by P_{1}, which is what an xor does! From this, we see that
$\mathrm{Oo}=\sim[\mathrm{Pr}$ XOR (PO XOR I) $]$, i.e. the post-negation of two cascaded xors, which is the same as a 3 -input xnor!

Answer (b)

O_{1} is a little harder. We can still study the table and see some patterns. That is, when $\mathrm{P}_{1}=0$,

Answer (b)

looks like nand $(\mathrm{Po}, \mathrm{I})=\sim\left(\mathrm{Po}^{*} \mathrm{I}\right)$. When $\mathrm{P}_{1}=1, \mathrm{O}_{1}$ is like a nor $(\mathrm{Po}, \mathrm{I})=\sim(\mathrm{Po}+\mathrm{I})$. This yields
$\mathrm{O} 1=\mathrm{Pl}^{\prime *}\left(\mathrm{Po}^{*} \mathrm{I}\right)^{\prime}+\mathrm{P}^{*}(\mathrm{Po}+\mathrm{I})^{\prime}$
$=\mathrm{Pi}^{{ }^{*}\left(\mathrm{PO}^{\prime}+\mathrm{I}^{\prime}\right)+\mathrm{P}^{\prime *}\left(\mathrm{Po}^{\prime *} \mathrm{I}^{\prime}\right) \text { \# DeMorgan's law }}$
$=$ Pi' Po' + Pi' $\mathrm{I}^{\prime}+\mathrm{Pi}^{\prime}$ Po' I' \# distribution
Recall the following distributive+law-of-1s+identity simplification?
Nell, we can run it backwards. That is, we can start with A and generate $A+A B$
Oı = Pı' Po + Pı' I' + Pı Po' I' \# from above

O1 = Pı' Po ${ }^{\prime}+\mathrm{Pr}^{\prime} \mathrm{I}^{\prime}+\mathrm{Pr}$ Po $\mathrm{I}^{\prime}+\mathrm{Pr}^{\prime}$ Po' I' \# distributive+law-of-1s+identity
$\mathrm{O} 1=\mathrm{Pl}^{\prime} \mathrm{Po}{ }^{\prime}+\mathrm{Pr}^{\prime} \mathrm{I}^{\prime}+\left(\mathrm{P}_{1}+\mathrm{Pr}^{\prime}\right) \mathrm{Po}{ }^{\prime} \mathrm{I}^{\prime}$ \# distribution

O1 = Pı' Po' + Pı' I' + (1)Po' I' \# complementarity
O1 = Pı' Po' + Pı' I' + Po' I' \# identity
$\mathrm{O}_{1}=\left(\mathrm{P}_{1} \mathrm{Po}+\mathrm{P}_{1} \mathrm{I}+\mathrm{PoI}\right)^{\prime} \#$ lots more Boolean algebra! ...a NotMajority, or AntiMajority, or Minority circuit!

CS150 Lab Problem (1)

- You will be making an 8bit, 2 digit combination lock such as those sometimes found on secure doors. The inputs to the lock consist of a code switch and two buttons. The code switch is used to enter the digits in the combination. The two buttons are Reset which is used to reset the lock and Enter which is used to enter a digit of the combination
- The comparison of the current input to each digit will be provided on two wires for you, Decodeı and Decode2

Answer (r)

 where the output is passed through flip-flops and sent back to the inpur

The non-feedback circuit we haven't seen before. However, from the problem description we know that Sx and sy (i.e., P 1 and PO) are really just time-delayed versions of the inputs. I. ., $\mathrm{P} 0=\mathrm{I}(\mathrm{t}-1)$ and $\mathrm{P} 1=1(t-2)$, we have the answer on the right.

CS150 Lab Problem (2)

- To operate the lock, a user would:
- 1. Set the code to the first digit and press Enter.
- 2. Set the code to the second digit and press Enter.
- 3. The lock will Open.
- 4. The user would then press enter (SW2).
- 5. Set the code to the new first digit and press Enter.
- 6. Set the code to the new second digit and press Enter.
- 7. Cycle back to step 3 above...
- When someone gets the combo wrong it would go like this:
- 1. Set the code to a wrong digit and press Enter.
- 2. Set the code to any digit (right or wrong) and press Enter
- 3. The lock will show Error
- 4. The lock will stay in this state until the user presses Reset.

Truth Table

Decode1	Decode2	PS2	PS1	PS0	NS2	NS1	NS0	Open	Error
0	X	0	0	0	1	0	1	0	0
1	X	0	0	0	0	0	1	0	0
X	0	0	0	1	1	1	0	0	0
X	1	0	0	1	0	1	0	0	0
X	X	0	1	0	0	1	1	1	0
X	X	0	1	1	1	0	0	0	0
X	X	1	0	0	0	1	0	0	0
X	X	1	0	1	1	1	0	0	0
X	X	1	1	0	1	1	0	0	1
X	X	1	1	1	X	X	X	X	X

Enter is a necessary condition for all state transitions Reset will always cause NS to be Init

Boolean Expressions

- NS2 $=\left(\mathrm{PS}_{2}^{\prime}\right.$ * PSı' * PSo' * Decoder' + PS2' * PSı' * PSo * Decodez' + $\mathrm{PS}_{2}{ }^{*}{ }^{*} \mathrm{PS}_{1}{ }^{*} \mathrm{PSo}+\mathrm{PS}_{2}{ }^{*} \mathrm{PSI}^{\prime}{ }^{*} \mathrm{PSo}+\mathrm{PS} 2$ * PS1 ${ }^{*}$ PSo') ${ }^{*}$ Enter + NS2 * Enter'
 * PS1 * PSo' + PS2 * PSı' * PSo' + PS2 * PSı' * PSo + PS2 * PS1 * PSo') * Enter + NSı ${ }^{*}$ Enter
- NSo $=\left(\mathrm{PS}_{2}{ }^{\prime}\right.$ * PSı' * PSo * Decodeı' + PS2' * PSı' * PSo * Decodeı + PS2 ${ }^{\prime}$ * PS1 * PSo) * Enter + NSo * Enter
- Open $=$ PS2 $_{2}{ }^{*}$ PS $_{1}$ * PSo ${ }^{\prime}$
- Error $=$ PS2 * PS1 * PSo ${ }^{\prime}$

Tasks a CPU must do

- Fetch an instruction

F

- Decode the instruction

- Get values from registers and set control lines
- Execute instruction (aritlemetric) A
- Meddle with Memory, if necessary M
- Record result of instruction
- a.k.a. register write back

Applying Those Steps

- If I have the following C code:
- \quad * $\mathrm{p}=\mathrm{z}+4$;
- Converting it to MIPS would produce
- addi \$to, z, 4
- sw \$to, o(p)
- Let's suppose you want to do this in 1 instruction Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Vaberie

Step 1 - Determine function

Step 1 - Determine function

- I want to add two values and store them into memory

Step 2 - Determine what is available

Step 1 - Determine function

- I want to add two values and store them into memory
- As a guidance, lets layout what the datapath must do

Step 2 - Determine what is available

Step 3 - Formulate Plan

- Add R[rt] to SignExtImmed
- Send R[rt]+SignExtImmed to Memory Data
- Send R[rs] to Memory Addr

Step 4 - Execute Plan

Things to Keep in Mind

- There is more than one way to modify datapath to produce same result
- If you split a line leading into an input, you need to use a mux.
- Send original line into o
- Send new line into 1

Pipelining Problems

- Hazards
- Structural: Using some type of circuit two different ways, at the same time
- Data: Instruction depends on result of prior instruction
- Control: Later instruction fetches delayed to wait for result of branch

Solving Hazards

```
- Structural
    - add hardware, use other properties
- Control
- do things earlier such as with branches
- delay slot compromise
- Data
```


- use forwarding, interlocking at worst case

Data Dependencies and

Forwarding

- Data Dependency
- Needing data at decode when updated data has not reached register write back
- Forwarding

- moving data from one stage to another
- Exception is R to D - not considered forwarding because no new wire is laid down no

wire laid down Spring 2007 CS61C Final Review, David Poll, Brian Nguyen, Valerie Ishida, Brian Zimmer

Arrow Drawing Guidelines (for method 2)

- Only draw arrow only if R of updated value of register does not line up on top to the left of D
- Arrows should never span more than 3 instructions (red arrow bad)

```
lalllll
```


Pitfalls in arrow drawing

- Pay attention to how registers are used
- Not all instructions update registers (i.e. sw)
- Some instructions use registers two different ways
- lw/sw uses one register for address, the other for data
- Method \#1 generally has arrows going left
- Arrow going to the right means no data dependency
- Method \#2 generally has arrows going right;
- Arrow going to the left for \#2 means forwarding won't help; meaning you must stall the pipeline (i.e. do interlock)

Branch Delay Slot

- Any instruction that follows a branch instruction occupies that slot
- That instruction is executed 100% of the time, unless we have advanced pipelining logic (pipeline flushing, out of order execution, etc).
- Unless we tell you otherwise, there is NO advanced pipeline logic.

Infamous Example

- How many clock cycles would it take to run the following code at left, if the pipelined MIPS CPU had all solutions to control and data hazards as discussed in class (branch delay slot, load interlock, register forwarding)?
addi \$1, \$0, 2
- loop: add \$0, \$0, \$0
- beq \$1, \$o, done
- add \$4, \$3, \$2
- add \$5, \$4, \$3
- add $\$ 6, \$ 5, \$ 4$
- addi \$1, \$1, -1
- beq \$o, \$o, loop addi \$1, \$1, -1
done: beq \$o, \$o, exit addi \$1, \$0, 3
- exit: addi \$1,\$0, 1

Spring 2007 CS6ic Final Review, David Poll, Brian Nguyen, Valerie Ishida, Brian Zimmer

Infamous Example

- addi \$1,\$0,2 • 2
- loop: add \$0, \$0, \$0 2, 10
- beq \$1, \$o, done - 3, 11
- add \$4, \$3, \$2 - 4, 12
- add $\$ 5, \$ 4, \$ 3$ - 5
add $\$ 6, \$ 5, \$ 4 \quad-6$
- addi \$1, \$1, -1 • 7
- beq \$0, \$o, loop - 8
- addi \$1, \$1, -1 • 9
- done: beq \$o, \$o, exit - 13
addi \$1, \$o, 3 - 14
- exit: addi \$1, \$0, 1 - 15, 16, 17, 18, 19
spring 2007 CS6ic Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer

More Pipelining Practice

- How many cycles are needed to execute the following code:
- CPU has
- loop:
- [1] add \$ao, \$ao, \$tı
- [2] \$ai, o(\$ao)
- no forwarding units
- will interlock on any hazard
- no delayed branch
- [3] add \$aı, \$a1, \$tı
- [4] sw \$aı, o(\$tı)
- [5] add \$tı, \$tı, -1
- 2nd stage branch compare
- instructions are not fetched until compare happèns $\$ 0$, end
- memory CAN be read/written on t [Tr $]$ samodedy $\$$ \$te9, \$t9, 1
\pm
same registers CAN be read/written on the same cycle
- exit: addi \$1, \$0, 1 Pipeline Draif - 15, 16, 17, 18, 19 Spring 2007 CS66C Final Review, David Poll, Brian
Nouyen Valerie lchida Nguyen, Valerie Ishida, Brian Zimmer

More Pipelining Practice

- How many cycles are needed to execute the following code:
- CPU has
- all forwarding units
- will interlock on any hazard
- delayed branch
- loop:
- [1] add \$ao, \$ao, \$tı
- [2] lw \$a1, o(\$ao)
- [3] add \$aı, \$aı, \$tı
- [4] sw \$aı, o(\$tı)
- [5] add \$tı, \$tı, -1
- 2nd stage branch compare
memory CAN be read/written on the [6arne bne cycle $\$ 0, \$ 0$, end
- same registers CAN be read/writtefrdn aldedasitecyte, 1

More Pipelining Practice				
$\stackrel{-1]}{ }{ }^{[1]}$	DamR			
- [2]	FDAMR			
	f damr			
	fdamr			
- 51	FDamr			
- [6]	FDAMR			
$\begin{aligned} & \text { FDAM R } \\ & \text { Cycles } \end{aligned}$				

Example

VM

Cache

- ı MiB Virtual Memory Space, 32 KiB Physical Memory
4 KiB Page Size
- oxooooC ox200Do oxioooo ox202Do ox200D8 ox204Do
- oxoooC
oxioDo
0×2000
oxi2Do
- 32 KiB Addressable Memory, 1 KiB Cache Size, 128 B Block Size, LRU Replacement, 2-way set associative oxıoD8 ox14Do Nguyen, Valerie Ishida, Brian Zimmer

VM/Caches

- What happens when we switch processes?
- Problem with Page Tables? (where are they?)
- AMAT
- AMAT $=$ Hit Time + (Miss \%) x (AMAT for Miss)
- Give an expression for AMAT of a system with VM (with TLB) and Cache

What else? (Final

Potpourri)
Valerie Ishida (Thanks to David Poll)

Performance

- CPU Time (CPI)
- Example:
- Memory Read - 10%, CPI = 18
- Memory Write $-15 \%, \mathrm{CPI}=20$
- $\mathrm{ALU}-30 \%, \mathrm{CPI}=1$
- Branch $-45 \%, \mathrm{CPI}=2$
- Overall CPI?
- CPU Speed $=1 \mathrm{GHz}$, 1 Million instructions, CPU Time?
- Cache added. Memory Read/Write halved. Improvement?
- Megahertz Myth
- What determines performance?

Spring 2007 CS6iC Final Review, David Poll, Brian
Nouyen Valerie lshid,
Nguyen, Valerie Ishida, Brian Zimmer

Networks

- Sharing vs. Switching
- Half-duplex vs. Full-duplex
- Packets

Packet - E-mail Example

- Header
- Payload
- Trailer
- Ack?

- TCP/IP

Disks

- Latency:
- Seek Time + Rotation Time + Transfer Time + Controller Overhead

Parallelization

- Why?
- Distributed Computing
- Parallel Processing
- Amdahl's law
- Time >= $s+1 / p$
- Speedup $<=1 / \mathrm{s}$

Conclusion

Questions on the Fa-05 Final?
\qquad

