
5/9/2007

1

David Poll, Brian Nguyen, Valerie Ishida, Brian Zimmer

Thanks to David Poll, David Jacobs, and Michael Le, Fall
‘06

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 1

1001 0010 0000 1000

1111 1111 1111 1111

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 2

David Poll (Thanks to David Jacobs)

“What’s with all these 1s and 0s?”
 1001 0010 0000 1000

 1111 1111 1111 1111

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 3

They’re a two’s complement integer!

0110 1101 1111 0111

0000 0000 0000 0001

Invert bits and add 1

0x16^3+ 0x16^2+ 0x16^1 + 1x16^0)

= -1811349505

It’s negative!

(-1)x(6x16^7+11x16^6+15x16^5+7x16^4+

“What’s with all these 1s and 0s?”
 1 00100100 00010001111111111111111

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 4

They’re a floating point number!

Sign Exponent Fraction/Significand

(-1)^1 x 1.0001000111…b x 2^(36-127)
Expressed in binary

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

= -4.323x10^(-28)

“What’s with all these 1s and 0s?”
 100100 10000 01000 111111111111111

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 5

They’re a MIPS instruction!

opcode rs rt immediate

It’s an I-type!

According to your green sheet…

opcode 36 lbu $rt, imm($rs)
$16 is $s0 and $8 is $t0

lbu $t0, -1($s0)

“What’s with all these 1s and 0s?”

 1001001000001000111111111111111

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 6

They’re 32 separate logical values!

The stove is on

The disk isn’t
ready to be read.

Interrupts are enabled

I showered today

5/9/2007

2

If there’s one thing you learn...

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 7

N bits can represent
2^N things

C and Memory

 Get an n-element array of things

 array = (thing *)

 malloc(n*sizeof(thing));

 Don’t forget to free it later.

 free(array);

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 8

Problem!
 typedef struct node {
 int value;
 struct node* next;
 } ent;

 stack push(stack s,int val){

 }

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 9

typedef ent * stack;

int peek(stack s){

}

stack pop(stack s,int * val){

}

Problem!
 typedef struct node {
 int value;
 struct node* next;
 } ent;

 stack push(stack s,int val){
 ent * new = (ent *)
 malloc (sizeof(ent));
 new->value = val;
 new->next = s;
 return new;

 }

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 10

typedef ent * stack;

int peek(stack s){

return s->value;

}

stack pop(stack s, int * val){

ent * temp = s->next;

*val = s->value;

free(s);

return temp;

}

Memory Management
 First fit

 Allocate the first available chunk big enough

 Next fit

 Allocate the first chunk after the last one allocated

 Best fit

 Allocate the smallest chunk capable of satisfying the
request

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 11

Memory Management
 Free List

 Linked list of free chunks, use first/next/best fit

 Slab Allocator

 Fixed number of 2^n sized chunks, can use a bitmap to
track. Free list for larger requests.

 Buddy Allocator

 2^n chunks can merge with their “buddy” to make a
2^(n+1) chunk. Free list for larger requests.

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 12

5/9/2007

3

Automatic Memory Management
 Reference Counting

 Keep track of pointers to each malloc’d chunk. Free
when references = 0.

 Mark and Sweep

 Recursively follow “root set” of pointers, marking
accessible chunks. Free unreachable chunks in place.

 Copying

 Split memory into two pieces. Mark reachable chunks as
above, then copy and defragment into other half.

Fall 2006 CS61C Final Review, David Poll, David
Jacobs, Michael Le 13

MIPS
 Sum: addiu $sp, $sp, -8
 sw $ra, 0($sp)
 sw $s0, 4($sp)
 add $s0, $a0, $0
 addiu $a0, $a0, -1
 jal Sum
 add $v0, $v0, $s0
 lw $s0, 4($sp)
 lw $ra, 0($sp)
 addiu $sp, $sp, 8
 jr $ra

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 14

Prologue

Body

Epilogue

Saved registers

Argument
registers

Return
value

Return
address

Problem!
 typedef struct node {
 int value; // offset 0
 struct node* next; //offset 4
 } ent;

 stack push(stack s, int val){
 ent * new = (ent *)
 malloc (sizeof(ent));
 new->value = val;
 new->next = s;
 return new;
 }

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 15

Push:

li $a0, 8

jal malloc

jr $ra

Problem!
 typedef struct node {
 int value; // offset 0
 struct node* next; //offset 4
 } ent;

 stack push(stack s, int val){
 ent * new = (ent *)
 malloc (sizeof(ent));
 new->value = val;
 new->next = s;
 return new;
 }

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 16

Push: addiu $sp, $sp, -12

sw $ra, 0($sp)

sw $a0, 4($sp)

sw $a1, 8($sp)

li $a0, 8

jal malloc

lw $a0, 4($sp)

lw $a1, 8($sp)

sw $a0, 4($v0)

sw $a1, 0($v0)

lw $ra, 0($sp)

addiu $sp, $sp, 12

jr $ra

CALL

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 17

C program: foo.c

Assembly program: foo.s

Executable(mach lang pgm): a.out

Compiler

Assembler

Linker

Loader

Memory

Object(mach lang module): foo.o

lib.o

Brian Zimmer

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 18

5/9/2007

4

Truth Tables
 Explicit declaration of a Boolean function for all values

of inputs

 Can use to derive a more compact analytical equation

 Sum of Products:
 Find all rows in which output is a 1

 Each row will be a term that is ORed with all other row terms

 For each row term, Input bit i is negated if it is a 0 in that row,
otherwise it appears as normal

Truth Table to Expression
A B C F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

1) Find all rows that have a “1” in
the output

2) Incorporate these rows into a
boolean equation, replacing the
column heading with its
negation if the row has a 0 in
that cell

First Row: A’B’C

Second Row: AB’C

The Whole Equation:
A’B’C + A’BC + AB’C’ + AB’C + ABC’ + ABC

Question S1
 How many gates are there for a Boolean function

of m inputs and n outputs?

Answer S1
 How many gates are there for a Boolean function

of m inputs and n outputs?

 Number of rows = 2^m

 Total number of bits to fiddle with = number of
rows * output bits per row = n * 2^m

 Total number of functions = 2^(Number of bits to
fiddle with)

 2^(n*2^(m))

5/9/2007

5

Boolean Equation Minimization
 That equation we just got was gross

 (A’B’C + A’BC + AB’C’ + AB’C + ABC’ + ABC)

 There’s probably a better way to represent

 Use Laws of Boolean Algebra

 Also
 Can help to verify if two functions are the same (they’ll

minimize to the same thing)

 Reduces complexity of hardware (most of the time,
there are several factors to this…)

Laws of Boolean Algebra

Working It Out
A’B’C + A’BC + AB’C’ + AB’C + ABC’ + ABC

(A’B’C + AB’C) + (A’BC + ABC) + (AB’C’ + ABC’) Associativity

B’C (A’ + A) + BC (A’ + A) + AC’ (B’ + B) Distributivity

B’C + BC + AC’ Complimentarity

C (B’ + B) + AC’ Distributivity

C + AC’ Complimentarity

(C + AC) + AC’ Uniting Theorem

C + A (C + C’) Distributivity

C + A Complimentarity

We’re Done! Look at how simple that is!

Components of Digital Systems
 Devices really built out of transistors, and transistors

out of pn-junctions, but we restrict our attention to
logic gates as the most fundamental building blocks.

 We can build up more complex blocks from these.

Building Blocks (1)

5/9/2007

6

Building Blocks (2) Muxes

Adder Question S2
 You have 1 of each: mux, OR, NOT.

 How can you represent:

 Blah = A * C’ + B * C’ + A’ * B’ * C

 With only these components?

Answer S2
 Rearrange the Equation:

 C’ * (A + B) + A’ * B’ * C

 A+B – use the OR

 A’ * B’ – use NOT on A+B

 DeMorgan’s Law

 Last step is tricky

 Use each of last two as inputs to the mux, with C as the
selection bit

5/9/2007

7

Timing Diagrams
Why?

 All real components have delays associated with them

 Help to show causality in a circuit

 Make sure you meet timing constraints

 Different parts of complex systems need to “handshake”
somehow

 Timing Diagrams VERY useful for showing the intricacies of such
handshakes

 They’re what you get when you have to debug a circuit

Register Timing When cascading registers and combinational logic, must respect setup
and hold times.

 Setup:
 T(clk-to-q)+T(CL)+T(setup) < T(clock)

 Hold:
 T(clk-to-q) + T(CL) > T(hold)
 If T(clk-to-q) > T(hold) then don’t need to worry

Accumulator Timing
• reset signal shown.

• Also, in practice X might not arrive to
the adder at the same time as Si-1

• Si temporarily is wrong, but register
always captures correct value.

• In good circuits, instability never
happens around rising edge of clk.

Finite State Machines
 Combinational Logic + State Elements

 State Elements essentially keep track of what has been
seen so far

 Combinational Logic used to determine what the next
state and current output are

SDS on Fa05 Final (a)

5/9/2007

8

Answer (a)
PP I OO NN (Input/Output label for edge) [#ZI(ABC) = NumberOfZerosIn(P1,P0,I)]
10 10 10

S00 0 -> 11 S00 (0/3) # Had two 0s, another one means we stay here and output
#ZI(000)=3

S00 1 -> 10 S01 (1/2) # This is our first 1 in a while, register we’ve seen a 1 by
setting I(t-1) to 1 (i.e., S01) and output #ZI(001)=2

S01 0 -> 10 S10 (0/2) # Saw a 01 before but this 0 means we goto S10 and output
#ZI(010)=2

S01 1 -> 01 S11 (1/1) # This is the 2nd 1 in a row, go to S11 and output #ZI(011)=1
S10 0 -> 10 S00 (0/2) # Saw a 1 2 timesteps ago, nothing since. Goto S00,output

#ZI(100)=2
S10 1 -> 01 S01 (1/1) # Saw a 1 2 timesteps ago, a 1 now. Goto 01, output #ZI(101)=1
S11 0 -> 01 S10 (0/1) # Saw 2 straight 1s, now a 0. Goto S10, output #ZI(110)=1

S11 1 -> 00 S11 (1/0) # Everything is coming up 1s! Stay here (in S11), output
#ZI(111)=0

Answer (a)

SDS on Fa05 Final (b) Answer (b)
We’ll do the easier ones first. Looking at the truth table (not doing the mindless

sum-of-products
calculation), we see:
N0=I
N1=P0
There are no names for these circuits. Let’s now look at O1 and O0. If we’re

extremely clever, we remember the two bit patterns for an adder’s two output
bits:

O1 is a minority circuit and O0 is a 3-input xnor. Let’s see if we can figure that out
even if we don’t remember these facts. Let’s study the truth table and look at
the negative spaces (the times when the output is zero). We see when P1 is 0
O0 looks like xnor(P0,I) = ~(P0 XOR I). When P1 is 1 O0 looks like xor(P0,I) =
(P0 XOR I). That is, P0 XOR I is being conditionally inverted by P1, which is
what an xor does! From this, we see that

O0 = ~[P1 XOR (PO XOR I)], i.e. the post-negation of two cascaded xors, which is
the same as a 3-input xnor!

Answer (b)
O1 is a little harder. We can still study the table and see some patterns. That is, when P1 = 0,

O1
looks like nand(P0,I) = ~(P0*I). When P1=1, O1 is like a nor(P0,I) = ~(P0+I). This yields

O1 = P1’*(P0*I)’ + P1*(P0+I)’

= P1’*(PO’+I’) + P1’*(P0’*I’) # DeMorgan’s law

= P1’ P0’ + P1’ I’ + P1’ P0’ I’ # distribution

Recall the following distributive+law-of-1s+identity simplification?
A+AB = A(1+B) = A(1) = A

Well, we can run it backwards. That is, we can start with A and generate A+AB.

We do that here with ~PI~P0:
P1’ P0’ = P1’ P0’(1) = P1’ P0’(1+I’) = P1’ P0’ + P1’ P0’ I’

So that means our three terms for O1 are now four:

Answer (b)
O1 = P1’ P0’ + P1’ I’ + P1 P0’ I’ # from above

O1 = P1’ P0’ + P1’ I’ + P1 P0’ I’ + P1’ P0’ I’ # distributive+law-of-1s+identity

O1 = P1’ P0’ + P1’ I’ + (P1+P1’)P0’ I’ # distribution

O1 = P1’ P0’ + P1’ I’ + (1)P0’ I’ # complementarity

O1 = P1’ P0’ + P1’ I’ + P0’ I’ # identity

O1 = (P1P0 + P1I + P0I)’ # lots more Boolean algebra!
…a NotMajority, or AntiMajority, or Minority circuit!

5/9/2007

9

SDS on Fa05 Final (c) Answer (c)

CS150 Lab Problem (1)
 You will be making an 8bit, 2 digit combination

lock such as those sometimes found on secure
doors. The inputs to the lock consist of a code
switch and two buttons. The code switch is used
to enter the digits in the combination. The two
buttons are Reset which is used to reset the lock
and Enter which is used to enter a digit of the
combination

 The comparison of the current input to each digit
will be provided on two wires for you, Decode1 and
Decode2

CS150 Lab Problem (2)
 To operate the lock, a user would:

 1. Set the code to the first digit and press Enter.
 2. Set the code to the second digit and press Enter.
 3. The lock will Open.
 4. The user would then press enter (SW2).
 5. Set the code to the new first digit and press Enter.
 6. Set the code to the new second digit and press Enter.
 7. Cycle back to step 3 above…

 When someone gets the combo wrong it would go like this:
 1. Set the code to a wrong digit and press Enter.
 2. Set the code to any digit (right or wrong) and press Enter
 3. The lock will show Error
 4. The lock will stay in this state until the user presses Reset.

State Diagram State Diagram

State Encoding

Init = 0

OK1 = 1

OK2 = 2

Prog1 = 3

Prog2 = 4

BAD1 = 5

BAD2 = 6

5/9/2007

10

Truth Table
Decode1 Decode2 PS2 PS1 PS0 NS2 NS1 NS0 Open Error

0 X 0 0 0 1 0 1 0 0

1 X 0 0 0 0 0 1 0 0

X 0 0 0 1 1 1 0 0 0

X 1 0 0 1 0 1 0 0 0

X X 0 1 0 0 1 1 1 0

X X 0 1 1 1 0 0 0 0

X X 1 0 0 0 1 0 0 0

X X 1 0 1 1 1 0 0 0

X X 1 1 0 1 1 0 0 1

X X 1 1 1 X X X X X

Enter is a necessary condition for all state transitions
Reset will always cause NS to be Init

Boolean Expressions
 NS2 = (PS2’ * PS1’ * PS0’ * Decode1’ + PS2’ * PS1’ * PS0 * Decode2’ +

PS2’ * PS1 * PS0 + PS2 * PS1’ * PS0 + PS2 * PS1 * PS0’) * Enter + NS2 *
Enter’

 NS1 = (PS2’ * PS1’ * PS0 * Decode2’ + PS2’ * PS1’ * PS0 * Decode2 + PS2’
* PS1 * PS0’ + PS2 * PS1’ * PS0’ + PS2 * PS1’ * PS0 + PS2 * PS1 * PS0’) *
Enter + NS1 * Enter’

 NS0 = (PS2’ * PS1’ * PS0 * Decode1’ + PS2’ * PS1’ * PS0 * Decode1 + PS2’
* PS1 * PS0’) * Enter + NS0 * Enter’

 Open = PS2’ * PS1 * PS0’

 Error = PS2 * PS1 * PS0’

Brian Nguyen (Thanks to David Jacobs)

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 71

Tasks a CPU must do
 Fetch an instruction

 Decode the instruction

 Get values from registers and set control lines

 Execute instruction

 Meddle with Memory, if necessary

 Record result of instruction

 a.k.a. register write back

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 72

Building/Extending a CPU Datapath
 Determine what function you want to do

 I want to support adding of two registers

 Determine what you have to work with
 I have registers, muxes, gates, and lots of wires

 Formulate a plan of bringing data from where it is
found to where it is needed

 I need to move data from registers to an ALU

 Execute your plan

 Determine Control Signals

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 73

Applying Those Steps
 If I have the following C code:

 *p = z + 4;

 Converting it to MIPS would produce

 addi $t0, z, 4

 sw $t0, 0(p)

 Let’s suppose you want to do this in 1 instruction
Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 74

5/9/2007

11

Step 1 – Determine function

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 75

Step 1 – Determine function
 I want to add two values and store them into memory

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 76

Step 1 – Determine function
 I want to add two values and store them into memory

 As a guidance, lets layout what the datapath must do

 Mem[R[rs]] = R[rt] + SignExtImmed

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 77

Step 2 – Determine what is
available

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 78

Step 2 – Determine what is
available

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 79

Step 3 – Formulate Plan

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 80

5/9/2007

12

Step 3 – Formulate Plan
 Add R[rt] to SignExtImmed

 Send R[rt]+SignExtImmed to Memory Data

 Send R[rs] to Memory Addr

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 81

Step 4 – Execute Plan

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 82

Adder

0 1

MemDataSrc

Data In

1

0

MemAddrSrc

Step 5 – Set Control Lines
Control Value Control Value

nPC_sel normal ExtOp Sign

RegDst X MemWr 1

RegWrite 0 MemToReg X

ALUCtrl X MemDataSrc 1

ALUSrc X MemAddrSrc 1
Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 83

Things to Keep in Mind
 There is more than one way to modify datapath to

produce same result

 If you split a line leading into an input, you need to use
a mux.

 Send original line into 0

 Send new line into 1

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 84

Valerie Ishida (Thanks to Michael Le)

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 85

Pipelining Problems
 Hazards

 Structural: Using some type of circuit two different ways,
at the same time

 Data: Instruction depends on result of prior instruction

 Control: Later instruction fetches delayed to wait for
result of branch

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 86

5/9/2007

13

Solving Hazards
 Structural

 add hardware, use other properties

 Control

 do things earlier such as with branches

 delay slot compromise

 Data

 use forwarding, interlocking at worst case

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 87

Data Dependencies and
Forwarding
 Data Dependency

 Needing data at decode when updated data has not
reached register write back

 Forwarding

 moving data from one stage to another

 Exception is R to D – not considered forwarding because no
new wire is laid down

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 88

Two methods for determining
data dependencies and forwarding
 If arrows are drawn starting from end (right side) of R

to stage where data is needed in a later instruction,
then the arrow represents data dependency

 If arrows are draw starting from when data is first
available (right side of stage) to where data is
absolutely needed (left side of stage), arrow represents
data dependency and forwarding possibility

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 89

• Only draw arrow only if R of updated value of
register does not line up on top to the left of D

• Arrows should never span more than 3
instructions (red arrow bad)

addi $t0, $t0, 0 F D A M R

add $t1, $t1, $t0 F D A M R

sub $t2, $t1, $a0 F D A M R

and $t3, $t0, $a1 F D A M R

ori $t4, $t0, $t1 F D A M R

Arrow Drawing Guidelines
(for method 2)

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 90

Pitfalls in arrow drawing
 Pay attention to how registers are used

 Not all instructions update registers (i.e. sw)

 Some instructions use registers two different ways
 lw/sw uses one register for address, the other for data

 Method #1 generally has arrows going left
 Arrow going to the right means no data dependency

 Method #2 generally has arrows going right;
 Arrow going to the left for #2 means forwarding won’t help;

meaning you must stall the pipeline (i.e. do interlock)

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 91

Branch Delay Slot
 Any instruction that follows a branch instruction

occupies that slot

 That instruction is executed 100% of the time, unless
we have advanced pipelining logic (pipeline flushing,
out of order execution, etc).

 Unless we tell you otherwise, there is NO advanced
pipeline logic.

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 92

5/9/2007

14

Infamous Example
 How many clock cycles

would it take to run the
following code at left, if the
pipelined MIPS CPU had
all solutions to control and
data hazards as discussed
in class (branch delay slot,
load interlock, register
forwarding)?

 addi $1, $0, 2
 loop: add $0, $0, $0
 beq $1, $0, done
 add $4, $3, $2
 add $5, $4, $3
 add $6, $5, $4
 addi $1, $1, -1
 beq $0, $0, loop
 addi $1, $1, -1
 done: beq $0, $0, exit
 addi $1, $0, 3
 exit: addi $1, $0, 1

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 93

Infamous Example
 addi $1, $0, 2
 loop: add $0, $0, $0
 beq $1, $0, done
 add $4, $3, $2
 add $5, $4, $3
 add $6, $5, $4
 addi $1, $1, -1
 beq $0, $0, loop
 addi $1, $1, -1
 done: beq $0, $0, exit
 addi $1, $0, 3
 exit: addi $1, $0, 1

 1
 2, 10
 3, 11
 4, 12
 5
 6
 7
 8
 9
 13
 14
 15, 16, 17, 18, 19

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 94

Infamous Example
 addi $1, $0, 2
 loop: add $0, $0, $0
 beq $1, $0, done
 add $4, $3, $2
 add $5, $4, $3
 add $6, $5, $4
 addi $1, $1, -1
 beq $0, $0, loop
 addi $1, $1, -1
 done: beq $0, $0, exit
 addi $1, $0, 3
 exit: addi $1, $0, 1

 1
 2, 10
 3, 11
 4, 12
 5
 6
 7
 8
 9
 13
 14
 15, 16, 17, 18, 19

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 95

19 Cycles

Pipeline Drain

More Pipelining Practice
 How many cycles are

needed to execute the
following code:

 loop:

 [1] add $a0, $a0, $t1

 [2] lw $a1, 0($a0)

 [3] add $a1, $a1, $t1

 [4] sw $a1, 0($t1)

 [5] add $t1, $t1, -1

 [6] bne $0, $0, end

 [7] add $t9, $t9, 1

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 96

• CPU has
– no forwarding units

– will interlock on any hazard

– no delayed branch

– 2nd stage branch compare

– instructions are not fetched until compare happens

– memory CAN be read/written on the same cycle

– same registers CAN be read/written on the same cycle

More Pipelining Practice
 1 1 1 1 1 1 1 1 1

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

 [1] F D A M R

 [2] F D D D A M R

 [3] F D A M R

 [4] F D A M R

 [5] F D A M R

 [6] F D A M R

 [7] F D A M R
Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 97

18 Cycles

More Pipelining Practice
 How many cycles are

needed to execute the
following code:

 loop:

 [1] add $a0, $a0, $t1

 [2] lw $a1, 0($a0)

 [3] add $a1, $a1, $t1

 [4] sw $a1, 0($t1)

 [5] add $t1, $t1, -1

 [6] bne $0, $0, end

 [7] add $t9, $t9, 1

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 98

• CPU has
– all forwarding units

– will interlock on any hazard

– delayed branch

– 2nd stage branch compare

memory CAN be read/written on the same cycle

– same registers CAN be read/written on the same cycle

5/9/2007

15

More Pipelining Practice
 1 1 1

 1 2 3 4 5 6 7 8 9 0 1 2

 [1] F D A M R

 [2] F D A M R

 [3] F D A M R

 [4] F D A M R

 [5] F D A M R

 [6] F D A M R

 [7] F D A M R
Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 99

12 Cycles

Brian Nguyen (Thanks to David Poll)

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 100

Caches
 Why?

 TIO

 Write-back

 Write-through

 Replacement

 Hit/Miss

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 101

Image from
HowStuffWorks.com

Example
VM Cache

 1 MiB Virtual Memory Space,
32 KiB Physical Memory
4 KiB Page Size

 0x0000C
0x200D0
0x10000
0x202D0
0x200D8
0x204D0

 32 KiB Addressable Memory,
1 KiB Cache Size,
128 B Block Size,
LRU Replacement,
2-way set associative

 0x000C
0x10D0
0x2000
0x12D0
0x10D8
0x14D0

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 102

VM
 Why?

 VPN vs. PPN

 Page Fault

 Page in, Page out

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 103

Image from
HowStuffWorks.com

VM/Caches
 What happens when we switch processes?

 Problem with Page Tables? (where are they?)

 AMAT

 AMAT = Hit Time + (Miss %) x (AMAT for Miss)

 Give an expression for AMAT of a system with VM (with
TLB) and Cache

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 104

5/9/2007

16

Valerie Ishida (Thanks to David Poll)

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 105

Performance
 CPU Time (CPI)

 Example:

 Memory Read – 10%, CPI = 18

 Memory Write – 15%, CPI = 20

 ALU – 30%, CPI = 1

 Branch – 45%, CPI = 2

 Overall CPI?

 CPU Speed = 1 GHz, 1 Million instructions, CPU Time?

 Cache added. Memory Read/Write halved. Improvement?

 Megahertz Myth

 What determines performance?

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 106

I/O
 Polling

 Are we there yet?

 Interrupts

 Wake me when we get there.

 Memory Mapped I/O

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 107

Networks
 Sharing vs. Switching

 Half-duplex vs. Full-duplex

 Packets

 Header

 Payload

 Trailer

 Ack?

 TCP/IP

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 108

Disks
 Latency:

 Seek Time + Rotation Time + Transfer Time + Controller
Overhead

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 109

RAID
 RAID-0

 Striped

 RAID-1

 Mirrored

 RAID-4

 Striped, parity drive

 RAID-5

 Striped, striped parity

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 110

5/9/2007

17

Parallelization
 Why?

 Distributed Computing

 Parallel Processing

 Amdahl’s law

 Time >= s + 1/p

 Speedup <= 1/s

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 111

Questions on the Fa-05 Final?

Spring 2007 CS61C Final Review, David Poll, Brian
Nguyen, Valerie Ishida, Brian Zimmer 112

