
CS61C L02 Number Representation (1) Garcia, Spring 2007 © UCB

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture #2 – Number Representation

2007-01-19 There is one handout
today at the front and

back of the room!

Great book ⇒
 The Universal History

of Numbers

by Georges Ifrah
CS61C L02 Number Representation (5) Garcia, Spring 2007 © UCB

Putting it all in perspective…

“If the automobile had followed the same
development cycle as the computer,

a Rolls-Royce would today cost $100,
get a million miles per gallon,

and explode once a year,
killing everyone inside.”

– Robert X. Cringely

CS61C L02 Number Representation (6) Garcia, Spring 2007 © UCB

Decimal Numbers: Base 10

Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:
3271 =

(3x103) + (2x102) + (7x101) + (1x100)

CS61C L02 Number Representation (7) Garcia, Spring 2007 © UCB

Numbers: positional notation
• Number Base B ⇒ B symbols per digit:

• Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Base 2 (Binary): 0, 1

• Number representation:
• d31d30 ... d1d0 is a 32 digit number
• value = d31 × B31 + d30 × B30 + ... + d1 × B1 + d0 × B0

• Binary: 0,1 (In binary digits called “bits”)
• 0b11010 = 1×24 + 1×23 + 0×22 + 1×21 + 0×20

= 16 + 8 + 2
= 26

• Here 5 digit binary # turns into a 2 digit decimal #
• Can we find a base that converts to binary easily?

#s often written
0b…

CS61C L02 Number Representation (8) Garcia, Spring 2007 © UCB

Hexadecimal Numbers: Base 16

• Hexadecimal:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
• Normal digits + 6 more from the alphabet
• In C, written as 0x… (e.g., 0xFAB5)

• Conversion: Binary⇔Hex
• 1 hex digit represents 16 decimal values
• 4 binary digits represent 16 decimal values
⇒1 hex digit replaces 4 binary digits

•One hex digit is a “nibble”. Two is a “byte”
• Example:
• 1010 1100 0011 (binary) = 0x_____ ?

CS61C L02 Number Representation (9) Garcia, Spring 2007 © UCB

Decimal vs. Hexadecimal vs. Binary
Examples:
1010 1100 0011 (binary)
= 0xAC3
10111 (binary)
= 0001 0111 (binary)
= 0x17
0x3F9
= 11 1111 1001 (binary)
How do we convert between
hex and Decimal?

00 0 0000
01 1 0001
02 2 0010
03 3 0011
04 4 0100
05 5 0101
06 6 0110
07 7 0111
08 8 1000
09 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111MEMORIZE!

Examples:
1010 1100 0011 (binary)
= 0xAC3
10111 (binary)
= 0001 0111 (binary)
= 0x17
0x3F9
= 11 1111 1001 (binary)
How do we convert between
hex and Decimal?

CS61C L02 Number Representation (10) Garcia, Spring 2007 © UCB

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

• Common use prefixes (all SI, except K [= k in SI])

• Confusing! Common usage of “kilobyte” means
1024 bytes, but the “correct” SI value is 1000 bytes
• Hard Disk manufacturers & Telecommunications are

the only computing groups that use SI factors, so
what is advertised as a 30 GB drive will actually only
hold about 28 x 230 bytes, and a 1 Mbit/s connection
transfers 106 bps.

1024 = 1,000,000,000,000,000,000,000,000280 = 1,208,925,819,614,629,174,706,176YYotta
1021 = 1,000,000,000,000,000,000,000270 = 1,180,591,620,717,411,303,424ZZetta
1018 = 1,000,000,000,000,000,000260 = 1,152,921,504,606,846,976EExa
1015 = 1,000,000,000,000,000250 = 1,125,899,906,842,624PPeta
1012 = 1,000,000,000,000240 = 1,099,511,627,776TTera
109 = 1,000,000,000230 = 1,073,741,824GGiga
106 = 1,000,000220 = 1,048,576MMega
103 = 1,000210 = 1,024KKilo
SI sizeFactorAbbrName

physics.nist.gov/cuu/Units/binary.html

CS61C L02 Number Representation (11) Garcia, Spring 2007 © UCB

kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi

• New IEC Standard Prefixes [only to exbi officially]

• International Electrotechnical Commission (IEC) in
1999 introduced these to specify binary quantities.
• Names come from shortened versions of the

original SI prefixes (same pronunciation) and bi is
short for “binary”, but pronounced “bee” :-(
• Now SI prefixes only have their base-10 meaning

and never have a base-2 meaning.

280 = 1,208,925,819,614,629,174,706,176

270 = 1,180,591,620,717,411,303,424

260 = 1,152,921,504,606,846,976
250 = 1,125,899,906,842,624

240 = 1,099,511,627,776

230 = 1,073,741,824

220 = 1,048,576

210 = 1,024
Factor

Yiyobi
Zizebi
Eiexbi
Pipebi
Titebi
Gigibi
Mimebi
Kikibi

AbbrName

en.wikipedia.org/wiki/Binary_prefix

As of this
writing, this
proposal has
yet to gain
widespread
use…

CS61C L02 Number Representation (12) Garcia, Spring 2007 © UCB

•What is 234? How many bits addresses
(I.e., what’s ceil log2 = lg of) 2.5 TiB?
•Answer! 2XY means…

X=0 ⇒ ---
X=1 ⇒ kibi ~103

X=2 ⇒ mebi ~106

X=3 ⇒ gibi ~109

X=4 ⇒ tebi ~1012

X=5 ⇒ pebi ~1015

X=6 ⇒ exbi ~1018

X=7 ⇒ zebi ~1021

X=8 ⇒ yobi ~1024

The way to remember #s

Y=0 ⇒ 1
Y=1 ⇒ 2
Y=2 ⇒ 4
Y=3 ⇒ 8
Y=4 ⇒ 16
Y=5 ⇒ 32
Y=6 ⇒ 64
Y=7 ⇒ 128
Y=8 ⇒ 256
Y=9 ⇒ 512

MEMORIZE!
CS61C L02 Number Representation (13) Garcia, Spring 2007 © UCB

What to do with representations of numbers?

• Just what we do with numbers!
• Add them
• Subtract them
• Multiply them
• Divide them
• Compare them

• Example: 10 + 7 = 17
• …so simple to add in binary that we can

build circuits to do it!
• subtraction just as you would in decimal
• Comparison: How do you tell if X > Y ?

 1 0 1 0

+ 0 1 1 1

1 0 0 0 1

11

CS61C L02 Number Representation (14) Garcia, Spring 2007 © UCB

Which base do we use?

• Decimal: great for humans, especially when
doing arithmetic
• Hex: if human looking at long strings of

binary numbers, its much easier to convert
to hex and look 4 bits/symbol
• Terrible for arithmetic on paper

• Binary: what computers use;
you will learn how computers do +, -, *, /
• To a computer, numbers always binary
• Regardless of how number is written:
• 32ten == 3210 == 0x20 == 1000002 == 0b100000
• Use subscripts “ten”, “hex”, “two” in book,

slides when might be confusing
CS61C L02 Number Representation (15) Garcia, Spring 2007 © UCB

BIG IDEA: Bits can represent anything!!

• Characters?
• 26 letters ⇒ 5 bits (25 = 32)
• upper/lower case + punctuation

 ⇒ 7 bits (in 8) (“ASCII”)
• standard code to cover all the world’s

languages ⇒ 8,16,32 bits (“Unicode”)
www.unicode.com

• Logical values?
• 0 ⇒ False, 1 ⇒ True

• colors ? Ex:
• locations / addresses? commands?
•MEMORIZE: N bits ⇔ at most 2N things

Red (00) Green (01) Blue (11)

CS61C L02 Number Representation (16) Garcia, Spring 2007 © UCB

How to Represent Negative Numbers?

• So far, unsigned numbers
•Obvious solution: define leftmost bit to be sign!

• 0 ⇒ +, 1 ⇒ –
• Rest of bits can be numerical value of number

• Representation called sign and magnitude
•MIPS uses 32-bit integers. +1ten would be:

0000 0000 0000 0000 0000 0000 0000 0001
• And –1ten in sign and magnitude would be:

1000 0000 0000 0000 0000 0000 0000 0001

CS61C L02 Number Representation (17) Garcia, Spring 2007 © UCB

Shortcomings of sign and magnitude?

•Arithmetic circuit complicated
•Special steps depending whether signs are
the same or not

•Also, two zeros
• 0x00000000 = +0ten
• 0x80000000 = –0ten
•What would two 0s mean for programming?

•Therefore sign and magnitude abandoned

CS61C L02 Number Representation (19) Garcia, Spring 2007 © UCB

Another try: complement the bits

•Example: 710 = 001112 –710 = 110002

•Called One’s Complement
•Note: positive numbers have leading 0s,
negative numbers have leadings 1s.

00000 00001 01111...

111111111010000 ...

•What is -00000 ? Answer: 11111
•How many positive numbers in N bits?
•How many negative numbers?

CS61C L02 Number Representation (20) Garcia, Spring 2007 © UCB

Shortcomings of One’s complement?

•Arithmetic still a somewhat complicated.
•Still two zeros
• 0x00000000 = +0ten

• 0xFFFFFFFF = -0ten

•Although used for awhile on some
computer products, one’s complement
was eventually abandoned because
another solution was better.

CS61C L02 Number Representation (21) Garcia, Spring 2007 © UCB

Standard Negative Number Representation
•What is result for unsigned numbers if tried
to subtract large number from a small one?
•Would try to borrow from string of leading 0s,
so result would have a string of leading 1s

 3 - 4 ⇒ 00…0011 – 00…0100 = 11…1111
•With no obvious better alternative, pick
representation that made the hardware simple
•As with sign and magnitude,
leading 0s ⇒ positive, leading 1s ⇒ negative

 000000...xxx is ≥ 0, 111111...xxx is < 0
 except 1…1111 is -1, not -0 (as in sign & mag.)

•This representation is Two’s Complement

CS61C L02 Number Representation (22) Garcia, Spring 2007 © UCB

2’s Complement Number “line”: N = 5
•2N-1 non-
negatives
•2N-1 negatives
•one zero
•how many
positives?

00000 00001
00010

11111
11110

10000 0111110001

0 1 2
-1

-2

-15 -16 15

.

.

.

.

.

.

-3
11101

-411100

00000 00001 01111...

111111111010000 ...

CS61C L02 Number Representation (23) Garcia, Spring 2007 © UCB

Two’s Complement for N=32
 0000 ... 0000 0000 0000 0000two = 0ten0000 ... 0000 0000 0000 0001two = 1ten0000 ... 0000 0000 0000 0010two = 2ten. . .

0111 ... 1111 1111 1111 1101two = 2,147,483,645ten0111 ... 1111 1111 1111 1110two = 2,147,483,646ten0111 ... 1111 1111 1111 1111two = 2,147,483,647ten1000 ... 0000 0000 0000 0000two = –2,147,483,648ten1000 ... 0000 0000 0000 0001two = –2,147,483,647ten1000 ... 0000 0000 0000 0010two = –2,147,483,646ten. . .
1111 ... 1111 1111 1111 1101two = –3ten1111 ... 1111 1111 1111 1110two = –2ten1111 ... 1111 1111 1111 1111two = –1ten

•One zero; 1st bit called sign bit
• 1 “extra” negative:no positive 2,147,483,648ten

CS61C L02 Number Representation (24) Garcia, Spring 2007 © UCB

Two’s Complement Formula
•Can represent positive and negative numbers
in terms of the bit value times a power of 2:

d31 x -(231) + d30 x 230 + ... + d2 x 22 + d1 x 21 + d0 x 20

•Example: 1101two
= 1x-(23) + 1x22 + 0x21 + 1x20

= -23 + 22 + 0 + 20

= -8 + 4 + 0 + 1
= -8 + 5
= -3ten

CS61C L02 Number Representation (25) Garcia, Spring 2007 © UCB

Two’s Complement shortcut: Negation
•Change every 0 to 1 and 1 to 0 (invert or
complement), then add 1 to the result
•Proof*: Sum of number and its (one’s)
complement must be 111...111two

However, 111...111two= -1ten
Let x’ ⇒ one’s complement representation of x
Then x + x’ = -1 ⇒ x + x’ + 1 = 0 ⇒ -x = x’ + 1

•Example: -3 to +3 to -3
x : 1111 1111 1111 1111 1111 1111 1111 1101twox’: 0000 0000 0000 0000 0000 0000 0000 0010two+1: 0000 0000 0000 0000 0000 0000 0000 0011two()’: 1111 1111 1111 1111 1111 1111 1111 1100two+1: 1111 1111 1111 1111 1111 1111 1111 1101two

You should be able to do this in your head…

*Check out www.cs.berkeley.edu/~dsw/twos_complement.html

CS61C L02 Number Representation (26) Garcia, Spring 2007 © UCB

Two’s comp. shortcut: Sign extension

• Convert 2’s complement number rep.
using n bits to more than n bits
• Simply replicate the most significant bit

(sign bit) of smaller to fill new bits
• 2’s comp. positive number has infinite 0s
• 2’s comp. negative number has infinite 1s
• Binary representation hides leading bits;
sign extension restores some of them
• 16-bit -4ten to 32-bit:

1111 1111 1111 1100two

1111 1111 1111 1111 1111 1111 1111 1100two

CS61C L02 Number Representation (27) Garcia, Spring 2007 © UCB

What if too big?
• Binary bit patterns above are simply

representatives of numbers. Strictly speaking
they are called “numerals”.

• Numbers really have an ∞ number of digits
• with almost all being same (00…0 or 11…1) except

for a few of the rightmost digits
• Just don’t normally show leading digits

• If result of add (or -, *, /) cannot be
represented by these rightmost HW bits,
overflow is said to have occurred.

00000 00001 00010 1111111110
unsigned

CS61C L02 Number Representation (29) Garcia, Spring 2007 © UCB

Number summary...
•We represent “things” in computers as

particular bit patterns: N bits ⇒ 2N

• Decimal for human calculations, binary for
computers, hex to write binary more easily
• 1’s complement - mostly abandoned

• 2’s complement universal in computing:
cannot avoid, so learn

•Overflow: numbers ∞; computers finite,errors!

00000 00001 01111...

111111111010000 ...

00000 00001 01111...

111111111010000 ...

