## Lecture \#2 - Number Representation

2007-01-19

There is one handout today at the front and back of the room!

## Lecturer SOE Dan Garcia

WWW . cs . berkeley . edu/~ddgarcia

Great book $\Rightarrow$ The Universal History of Numbers
by Georges Ifrah


## Great DeCal courses I supervise (2 units)

## - UCBUGG

- UC Berkeley Undergraduate Graphics Group
- Thursdays 5:30-7:30pm in 310 Soda
- Learn to create a short 3D animation
- No prereqs (but they might have too many students, so admission not guaranteed)
-http://ucbugg.berkeley.edu
- MS-DOS X
- Macintosh Software Developers for OS X
- Thursdays 5-7pm in 320 Soda
- Learn to program the Macintosh and write an awesome GUl application
- No prereqs (other than interest)
$\circ$ http. //msdosx.berkeley.edu


## Review

- Continued rapid improvement in computing
- 2X every 2.0 years in memory size; every 1.5 years in processor speed; every 1.0 year in disk capacity;
- Moore's Law enables processor (2X transistors/chip ~1.5 yrs)
- 5 classic components of all computers

Control Datapath Memory Input Output Processor

## My goal as an instructor

- To make your experience in CS61C as enjoyable \& informative as possible
- Humor, enthusiasm, graphics \& technology-in-the-news in lecture
- Fun, challenging projects \& HW
- Pro-student policies (exam clobbering)
- To maintain Cal \& EECS standards of excellence

- Your projects \& exams will be just as rigorous as every year. Overall : B- avg
- To be an HKN "7.0" man
- I know I speak fast when I get excited about material. I'm told every semester. Help me slow down when I go toooo fast.
- Please give me feedback so I improve! Why am I not 7.0 for you? I will listen!!


## Putting it all in perspective...

## "If the automobile had followed the same development cycle as the computer,

## - Robert X. Cringely

## Decimal Numbers: Base 10

## Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:
3271 =

$$
\left(3 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(7 \times 10^{1}\right)+\left(1 \times 10^{0}\right)
$$

## Numbers: positional notation

- Number Base $B \Rightarrow$ B symbols per digit:
- Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Base 2 (Binary): 0,1
- Number representation:
- $d_{31} d_{30} \ldots d_{1} d_{0}$ is a 32 digit number
$\cdot$ value $=d_{31} \times B^{31}+d_{30} \times B^{30}+\ldots+d_{1} \times B^{1}+d_{0} \times B^{0}$
- Binary: 0,1 (In binary digits called "bits")


$$
\begin{aligned}
\cdot 0 b 11010 & =1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
& =16+8+2
\end{aligned}
$$

\#s often written = 26
Ob... • Here 5 digit binary \# turns into a 2 digit decimal \#

- Can we find a base that converts to binary easily?


## Hexadecimal Numbers: Base 16

- Hexadecimal:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

- Normal digits + 6 more from the alphabet
- In C, written as 0x... (e.g., 0xFAB5)
- Conversion: Binary $\Leftrightarrow$ Hex
- 1 hex digit represents 16 decimal values
- 4 binary digits represent 16 decimal values
$\Rightarrow 1$ hex digit replaces 4 binary digits
- One hex digit is a "nibble". Two is a "byte"
- Example: ?


## Decimal vs. Hexadecimal vs. Binary

## Examples:

101011000011 (binary)
= 0xAC3
10111 (binary)
$=00010111$ (binary)
$=0 \times 17$

## 0x3F9

= 1111111001 (binary)
How do we convert between hex and Decimal?

| 00 | 0 | 0000 |
| :--- | :--- | :--- |
| 01 | 1 | 0001 |
| 02 | 2 | 0010 |
| 03 | 3 | 0011 |
| 04 | 4 | 0100 |
| 05 | 5 | 0101 |
| 06 | 6 | 0110 |
| 07 | 7 | 0111 |
| 08 | 8 | 1000 |
| 09 | 9 | 1001 |
| 10 | A | 1010 |
| 11 | $B$ | 1011 |
| 12 | $C$ | 1100 |
| 13 | $D$ | 1101 |
| 14 | E | 1110 |
| 15 | F | 1111 |

## Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta

physics.nist.gov/cuu/Units/binary.html

- Common use prefixes (all SI, except K [= k in SI])

| Name | Abbr | Factor | SI size |
| :--- | :---: | :--- | :--- |
| Kilo | K | $\mathbf{2}^{10}=\mathbf{1 , 0 2 4}$ | $10^{3}=1,000$ |
| Mega | M | $2^{20}=1,048,576$ | $10^{6}=1,000,000$ |
| Giga | G | $2^{30}=1,073,741,824$ | $10^{9}=1,000,000,000$ |
| Tera | T | $2^{40}=1,099,511,627,776$ | $10^{12}=1,000,000,000,000$ |
| Peta | P | $\mathbf{2}^{50}=1,125,899,906,842,624$ | $10^{15}=1,000,000,000,000,000$ |
| Exa | E | $\mathbf{2}^{60}=1,152,921,504,606,846,976$ | $10^{18}=1,000,000,000,000,000,000$ |
| Zetta | Z | $\mathbf{2}^{70}=1,180,591,620,717,411,303,424$ | $10^{21}=1,000,000,000,000,000,000,000$ |
| Yotta | Y | $\mathbf{2}^{80}=1,208,925,819,614,629,174,706,176$ | $10^{24}=1,000,000,000,000,000,000,000,000$ |

- Confusing! Common usage of "kilobyte" means 1024 bytes, but the "correct" SI value is 1000 bytes
- Hard Disk manufacturers \& Telecommunications are the only computing groups that use SI factors, so what is advertised as a 30 GB drive will actually only hold about $28 \times 2^{30}$ bytes, and a $1 \mathrm{Mbit} / \mathrm{s}$ connection transfers $10^{6} \mathrm{bps}$.


## kibi, mebi, gibi, tebi, pebi, exbi, zebi, yobi

## en.wikipedia.org/wiki/Binary_prefix

- New IEC Standard Prefixes [only to exbi officially]

| Name | Abbr | Factor |
| :--- | :---: | :--- |
| kibi | Ki | $2^{10}=1,024$ |
| mebi | Mi | $2^{20}=1,048,576$ |
| gibi | Gi | $2^{30}=1,073,741,824$ |
| tebi | Ti | $2^{40}=1,099,511,627,776$ |
| pebi | Pi | $2^{50}=1,125,899,906,842,624$ |
| exbi | Ei | $2^{60}=1,152,921,504,606,846,976$ |
| zebi | Zi | $2^{70}=1,180,591,620,717,411,303,424$ |
| yobi | Yi | $2^{80}=1,208,925,819,614,629,174,706,176$ |

> As of this writing, this proposal has yet to gain widespread use...

- International Electrotechnical Commission (IEC) in 1999 introduced these to specify binary quantities.
- Names come from shortened versions of the original SI prefixes (same pronunciation) and bi is short for "binary", but pronounced "bee" :-(
- Now SI prefixes only have their base-10 meaning and never have a base-2 meaning.


## The way to remember \#s

- What is $2^{34}$ ? How many bits addresses (l.e., what's ceil $\log _{2}=1 \mathrm{~g}$ of) 2.5 TiB?
- Answer! $\mathbf{2}^{\mathrm{XY}}$ means...
$X=0 \Rightarrow---$
$X=1 \Rightarrow$ kibi $\sim 10^{3}$
$X=2 \Rightarrow$ mebi $\sim 10^{6}$
$X=3 \Rightarrow$ gibi $\sim 10^{9}$
$X=4 \Rightarrow$ tebi $\sim 10^{12}$
$X=5 \Rightarrow$ pebi $\sim 10^{15}$
$X=6 \Rightarrow$ exbi $\sim 10^{18}$
$X=7 \Rightarrow$ zebi $\sim 10^{21}$
$X=8 \Rightarrow$ yobi $\sim 10^{24}$
$Y=0 \Rightarrow 1$
$Y=1 \Rightarrow 2$
$Y=2 \Rightarrow 4$
$Y=3 \Rightarrow 8$
$Y=4 \Rightarrow 16$
$Y=5 \Rightarrow 32$
$Y=6 \Rightarrow 64$
$Y=7 \Rightarrow 128$
$Y=8 \Rightarrow 256$
$Y=9 \Rightarrow 512$


## What to do with representations of numbers?

- Just what we do with numbers!
- Add them
- Subtract them
- Multiply them
- Divide them
- Compare them
- Example: 10 + 7 = $\mathbf{1 7}$
- ...so simple to add in binary that we can build circuits to do it!
- subtraction just as you would in decimal
-Comparison: How do you tell if $\mathrm{X}>\mathrm{Y}$ ?


## Which base do we use?

- Decimal: great for humans, especially when doing arithmetic
- Hex: if human looking at long strings of binary numbers, its much easier to convert to hex and look 4 bits/symbol
- Terrible for arithmetic on paper
- Binary: what computers use; you will learn how computers do +, -, *, /
- To a computer, numbers always binary
- Regardless of how number is written:
- $32_{\text {ten }}==32_{10}==0 \times 20==100000_{2}==0 b 100000$
- Use subscripts "ten", "hex", "two" in book, slides when might be confusing


## BIG IDEA: Bits can represent anything!!

- Characters?
- 26 letters $\Rightarrow 5$ bits $\left(2^{5}=32\right)$
- upper/lower case + punctuation $\Rightarrow 7$ bits (in 8) ("ASCII")
- standard code to cover all the world's languages $\Rightarrow 8,16,32$ bits ("Unicode") www. unicode. com
- Logical values?
- $0 \Rightarrow$ False, $1 \Rightarrow$ True
- colors ? Ex: Red (00) Green (01) Blue (11)
- locations / addresses? commands?
- MEMORIZE: $N$ bits $\Leftrightarrow$ at most $2^{N}$ things


## How to Represent Negative Numbers?

- So far, unsigned numbers
- Obvious solution: define leftmost bit to be sign!
$\cdot 0 \Rightarrow+, 1 \Rightarrow-$
- Rest of bits can be numerical value of number
- Representation called sign and magnitude
- MIPS uses 32 -bit integers. $+1_{\text {ten }}$ would be: 00000000000000000000000000000001
- And $-1_{\text {ten }}$ in sign and magnitude would be: 10000000000000000000000000000001


## Shortcomings of sign and magnitude?

- Arithmetic circuit complicated
- Special steps depending whether signs are the same or not
- Also, two zeros
- $0 x 00000000=+0_{\text {ten }}$
- $0 \times 800000000=-0_{\text {ten }}$
- What would two Os mean for programming?
- Therefore sign and magnitude abandoned


## Administrivia

- Upcoming lectures
- Next three lectures: Introduction to C
- Lab overcrowding
- Remember, you can go to ANY discussion (none, or one that doesn't match with lab, or even more than one if you want)
- Overcrowded labs - consider finishing at home and getting checkoffs in lab, or bringing laptop to lab
- HW
- HWO due in discussion next week
- HW1 due this Wed @ 23:59 PST
- HW2 due following Wed @ 23:59 PST
- Reading
- K\&R Chapters 1-6 (lots, get started now!); 1st quiz due Sun!
- Soda locks doors @ 6:30pm \& on weekends
- Look at class website, newsgroup often!
http: / /inst.eecs.berkeley.edu/~cs61c/ ucb.class.cs61c


## Another try: complement the bits

- Example: $\quad \mathbf{7}_{10}=\mathbf{0 0 1 1 1}_{2} \quad-\mathbf{7}_{10}=\mathbf{1 1 0 0 0}_{2}$
- Called One's Complement
- Note: positive numbers have leading 0s, negative numbers have leadings 1 s .

-What is -00000 ? Answer: 11111
- How many positive numbers in N bits?


## Shortcomings of One's complement?

- Arithmetic still a somewhat complicated.
-Still two zeros
- $0 \times 00000000=+0_{\text {ten }}$
- $0 \times \mathrm{xFFFFFFFF}=-0_{\text {ten }}$
- Although used for awhile on some computer products, one's complement was eventually abandoned because another solution was better.


## Standard Negative Number Representation

- What is result for unsigned numbers if tried to subtract large number from a small one?
- Would try to borrow from string of leading 0s, so result would have a string of leading 1 s

$$
\text { - } 3-4 \Rightarrow 00 . . .0011-00 \ldots 0100=11 \ldots 1111
$$

- With no obvious better alternative, pick representation that made the hardware simple
- As with sign and magnitude,
leading $0 \mathrm{~s} \Rightarrow$ positive, leading $1 \mathrm{~s} \Rightarrow$ negative
- 000000...xxx is $\geq 0,111111 \ldots x x x$ is $<0$
- except 1 ... 1111 is -1 , not -0 (as in sign \& mag.)
- This representation is Two's Complement


## 2's Complement Number "line": $\mathrm{N}=5$



## Two's Complement for $\mathrm{N}=32$



- One zero; 1st bit called sign bit
- 1 "extra" negative:no positive 2,147,483,648 ${ }_{\text {ten }}$


## Two's Complement Formula

- Can represent positive and negative numbers in terms of the bit value times a power of 2:

$$
\left.d_{31} \times-\left(2^{31}\right)\right)+d_{30} \times 2^{30}+\ldots+d_{2} \times 2^{2}+d_{1} \times 2^{1}+d_{0} \times 2^{0}
$$

- Example: $1101^{\text {two }}$

$$
\begin{aligned}
& =1 \times-\left(2^{3}\right)+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =-2^{3}+2^{2}+0+2^{0} \\
& =-8+4+0+1 \\
& =-8+5 \\
& =-3_{\text {ten }}
\end{aligned}
$$

## Two's Complement shortcut: Negation

*Check out www.cs.berkeley.edu/~dsw/twos_complement.html

- Change every 0 to 1 and 1 to $\overline{0}$ (invert or complement), then add 1 to the result
- Proof*: Sum of number and its (one's) complement must be 111... $111_{\text {two }}$ However, $111 \ldots . .111_{\text {two }}=-1_{\text {ten }}$
Let $\mathrm{x}^{\prime} \Rightarrow$ one's complement representation of x
Then $\mathrm{x}+\mathrm{x}^{\prime}=-1 \Rightarrow \mathrm{x}+\mathrm{x}^{\prime}+1=0 \Rightarrow-\mathrm{x}=\mathrm{x}^{\prime}+1$
- Example: -3 to +3 to -3

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |

You should be able to do this in your head... ${ }_{\text {nesue }}$

## Two's comp. shortcut: Sign extension

- Convert 2's complement number rep. using n bits to more than n bits
- Simply replicate the most significant bit (sign bit) of smaller to fill new bits
- 2's comp. positive number has infinite 0s
- 2's comp. negative number has infinite 1s
- Binary representation hides leading bits; sign extension restores some of them
- 16-bit -4 ${ }_{\text {ten }}$ to 32-bit:

$$
1111111111111100_{\text {two }}
$$ $11111111111111111111111111111100^{\text {two }}$

## What if too big?

- Binary bit patterns above are simply representatives of numbers. Strictly speaking they are called "numerals".
- Numbers really have an $\infty$ number of digits
- with almost all being same (00...0 or 11...1) except for a few of the rightmost digits
- Just don't normally show leading digits
- If result of add (or -, *, /) cannot be represented by these rightmost HW bits, overflow is said to have occurred.

000000000100010
1111011111
unsigned

## Peer Instruction Question

$X=11111111111111111111111111111100_{\text {two }}$
$Y=0011101110011010100010100000{00000_{\text {two }}}$
A. $X>Y$ (if signed)
B. $X>Y$ (if unsigned)
C. An encoding for Babylonians could have $2^{N}$ non-negative numbers w/N bits!

ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7 : TTT
Garcia, Spring 2007 © UCB

## Number summary...

- We represent "things" in computers as particular bit patterns: $N$ bits $\Rightarrow 2^{N}$
- Decimal for human calculations, binary for computers, hex to write binary more easily
-1's complement - mostly abandoned

-2's complement universal in computing: cannot avoid, so learn


10000
Overflow: numbers $\infty$; computers finite,errors!

