
CS61C L03 Introduction to C (pt 1) (1) Garcia, Spring 2007 © UCB

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 3 – Introduction to
the C Programming Language (pt 1)

 2007-01-22
There is one handout
today at the front and

back of the room!

HP overcomes Moore’s Law? ⇒
Their design: “field programmable

nanowire interconnect (FPNI)” uses a technique that
“will enable chip makers to pack eight times as many

transistors as is currently possible on a standard
45nm field programmable gate array (FPGA) chip.”

hardware.slashdot.org/hardware/07/01/17/1333232.shtml

CS61C L03 Introduction to C (pt 1) (2) Garcia, Spring 2007 © UCB

Number review...
•We represent “things” in computers as

particular bit patterns: N bits ⇒ 2N

• Decimal for human calculations, binary for
computers, hex to write binary more easily
• 1’s complement - mostly abandoned

• 2’s complement universal in computing:
cannot avoid, so learn

•Overflow: numbers ∞; computers finite,errors!

00000 00001 01111...

111111111010000 ...

00000 00001 01111...

111111111010000 ...

CS61C L03 Introduction to C (pt 1) (3) Garcia, Spring 2007 © UCB

Two’s Complement shortcut: Negation
•Change every 0 to 1 and 1 to 0 (invert or
complement), then add 1 to the result
•Proof*: Sum of number and its (one’s)
complement must be 111...111two

However, 111...111two= -1ten
Let x’ ⇒ one’s complement representation of x
Then x + x’ = -1 ⇒ x + x’ + 1 = 0 ⇒ -x = x’ + 1

•Example: -3 to +3 to -3
x : 1111 1111 1111 1111 1111 1111 1111 1101twox’: 0000 0000 0000 0000 0000 0000 0000 0010two+1: 0000 0000 0000 0000 0000 0000 0000 0011two()’: 1111 1111 1111 1111 1111 1111 1111 1100two+1: 1111 1111 1111 1111 1111 1111 1111 1101two

You should be able to do this in your head…

*Check out www.cs.berkeley.edu/~dsw/twos_complement.html

CS61C L03 Introduction to C (pt 1) (4) Garcia, Spring 2007 © UCB

Two’s comp. shortcut: Sign extension

• Convert 2’s complement number rep.
using n bits to more than n bits
• Simply replicate the most significant bit

(sign bit) of smaller to fill new bits
• 2’s comp. positive number has infinite 0s
• 2’s comp. negative number has infinite 1s
• Binary representation hides leading bits;
sign extension restores some of them
• 16-bit -4ten to 32-bit:

1111 1111 1111 1100two

1111 1111 1111 1111 1111 1111 1111 1100two

CS61C L03 Introduction to C (pt 1) (5) Garcia, Spring 2007 © UCB

What if too big?
• Binary bit patterns above are simply

representatives of numbers. Strictly speaking
they are called “numerals”.

• Numbers really have an ∞ number of digits
• with almost all being same (00…0 or 11…1) except

for a few of the rightmost digits
• Just don’t normally show leading digits

• If result of add (or -, *, /) cannot be
represented by these rightmost HW bits,
overflow is said to have occurred.

00000 00001 00010 1111111110
unsigned

CS61C L03 Introduction to C (pt 1) (6) Garcia, Spring 2007 © UCB

Peer Instruction Question

X = 1111 1111 1111 1111 1111 1111 1111 1100two

Y = 0011 1011 1001 1010 1000 1010 0000 0000two

A. X > Y (if signed)
B. X > Y (if unsigned)
C. An encoding for Babylonians could have 2N

non-negative numbers w/N bits!

 ABC
0: FFF
1: FFT
2: FTF
3: FTT
4: TFF
5: TFT
6: TTF
7: TTT

CS61C L03 Introduction to C (pt 1) (7) Garcia, Spring 2007 © UCB

Introduction to C

CS61C L03 Introduction to C (pt 1) (8) Garcia, Spring 2007 © UCB

Has there been an update to ANSI C?
• Yes! It’s called the “C99” or “C9x” std

• You need “gcc -std=c99” to compile

• References
http://en.wikipedia.org/wiki/C99
http://home.tiscalinet.ch/t_wolf/tw/c/c9x_changes.html

• Highlights
• Declarations anywhere, like Java (#15)
• Java-like // comments (to end of line) (#10)
• Variable-length non-global arrays (#33)
•<inttypes.h>: explicit integer types (#38)
•<stdbool.h> for boolean logic def’s (#35)
•restrict keyword for optimizations (#30)

CS61C L03 Introduction to C (pt 1) (9) Garcia, Spring 2007 © UCB

Disclaimer

• Important: You will not learn how to
fully code in C in these lectures!
You’ll still need your C reference for
this course.

• K&R is a must-have reference
 Check online for more sources

• “JAVA in a Nutshell,” O’Reilly.
 Chapter 2, “How Java Differs from C”

• Brian Harvey’s course notes
 On class website

CS61C L03 Introduction to C (pt 1) (10) Garcia, Spring 2007 © UCB

Compilation : Overview

C compilers take C and convert it into
an architecture specific machine code
(string of 1s and 0s).

• Unlike Java which converts to
architecture independent bytecode.

• Unlike most Scheme environments which
interpret the code.

• These differ mainly in when your
program is converted to machine
instructions.

• For C, generally a 2 part process of
compiling .c files to .o files, then linking
the .o files into executables

CS61C L03 Introduction to C (pt 1) (11) Garcia, Spring 2007 © UCB

Compilation : Advantages

•Great run-time performance: generally
much faster than Scheme or Java for
comparable code (because it
optimizes for a given architecture)
•OK compilation time: enhancements
in compilation procedure (Makefiles)
allow only modified files to be
recompiled

CS61C L03 Introduction to C (pt 1) (12) Garcia, Spring 2007 © UCB

Compilation : Disadvantages

•All compiled files (including the
executable) are architecture specific,
depending on both the CPU type and
the operating system.
•Executable must be rebuilt on each
new system.

• Called “porting your code” to a new
architecture.

•The “change→compile→run [repeat]”
iteration cycle is slow

CS61C L03 Introduction to C (pt 1) (13) Garcia, Spring 2007 © UCB

C vs. Java™ Overview (1/2)

Java
• Object-oriented
(OOP)

• “Methods”
• Class libraries of
data structures

• Automatic
memory
management

C
• No built-in object

abstraction. Data
separate from
methods.

• “Functions”
• C libraries are
lower-level

• Manual
memory
management

• Pointers

CS61C L03 Introduction to C (pt 1) (14) Garcia, Spring 2007 © UCB

C vs. Java™ Overview (2/2)

Java
• High memory
overhead from
class libraries

• Relatively Slow
• Arrays initialize
to zero

• Syntax:
 /* comment */
// comment
System.out.print

C
• Low memory
overhead

• Relatively Fast
• Arrays initialize
to garbage

• Syntax: *
/* comment */
// comment
printf

*You need newer C compilers to allow Java style
comments, or just use C99

CS61C L03 Introduction to C (pt 1) (15) Garcia, Spring 2007 © UCB

C Syntax: Variable Declarations
• Very similar to Java, but with a few minor

but important differences
• All variable declarations must go before they

are used (at the beginning of the block)*
• A variable may be initialized in its

declaration.
• Examples of declarations:

• correct: {
int a = 0, b = 10;

...

• Incorrect:* for (int i = 0; i < 10; i++)

*C99 overcomes these limitations

CS61C L03 Introduction to C (pt 1) (16) Garcia, Spring 2007 © UCB

C Syntax: True or False?

•What evaluates to FALSE in C?
• 0 (integer)
• NULL (pointer: more on this later)
• no such thing as a Boolean*

•What evaluates to TRUE in C?
• everything else…
• (same idea as in scheme: only #f is
false, everything else is true!)

*Boolean types provided by C99’s stdbool.h

CS61C L03 Introduction to C (pt 1) (17) Garcia, Spring 2007 © UCB

C syntax : flow control

• Within a function, remarkably close to
Java constructs in methods (shows its
legacy) in terms of flow control
•if-else

•switch

•while and for
•do-while

CS61C L03 Introduction to C (pt 1) (18) Garcia, Spring 2007 © UCB

C Syntax: main
•To get the main function to accept
arguments, use this:
int main (int argc, char *argv[])

•What does this mean?
•argc will contain the number of strings
on the command line (the executable
counts as one, plus one for each
argument).
 Example: unix% sort myFile

•argv is a pointer to an array containing
the arguments as strings (more on
pointers later).

CS61C L03 Introduction to C (pt 1) (19) Garcia, Spring 2007 © UCB

Administrivia
• Upcoming lectures

• C pointers and arrays in detail

• HW
• HW0 due in discussion next week
• HW1 due next Wed @ 23:59 PST
• HW2 due following Wed @ 23:59 PST

• Reading
• K&R Chapters 1-5 (lots, get started now!)
• First quiz due Sun

• Email me Ki - Me - Gi - … mnemonics!
• The subject should be “kibi mebi gibi acronym”

CS61C L03 Introduction to C (pt 1) (20) Garcia, Spring 2007 © UCB

Address vs. Value

•Consider memory to be a single huge
array:

• Each cell of the array has an address
associated with it.

• Each cell also stores some value.
• Do you think they use signed or
unsigned numbers? Negative address?!

•Don’t confuse the address referring to
a memory location with the value
stored in that location.

23 42 101 102 103 104 105 ...

CS61C L03 Introduction to C (pt 1) (21) Garcia, Spring 2007 © UCB

Pointers

•An address refers to a particular
memory location. In other words, it
points to a memory location.
•Pointer: A variable that contains the
address of a variable.

23 42 101 102 103 104 105 ...

x y

Location (address)

name
p

104

CS61C L03 Introduction to C (pt 1) (22) Garcia, Spring 2007 © UCB

Pointers
•How to create a pointer:
& operator: get address of a variable

int *p, x; p ? x ?

x = 3;
p ? x 3

p =&x;
p x 3

•How get a value pointed to?
 * “dereference operator”: get value pointed to

printf(“p points to %d\n”,*p);

Note the “*” gets used
2 different ways in
this example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

CS61C L03 Introduction to C (pt 1) (23) Garcia, Spring 2007 © UCB

Pointers
•How to change a variable pointed to?

• Use dereference * operator on left of =

p x 5*p = 5;

p x 3

CS61C L03 Introduction to C (pt 1) (24) Garcia, Spring 2007 © UCB

Pointers and Parameter Passing
•Java and C pass parameters “by value”

• procedure/function/method gets a copy of the
parameter, so changing the copy cannot
change the original
 void addOne (int x) {

 x = x + 1;
}

 int y = 3;

 addOne(y);

y is still = 3

CS61C L03 Introduction to C (pt 1) (25) Garcia, Spring 2007 © UCB

Pointers and Parameter Passing
•How to get a function to change a value?
 void addOne (int *p) {

*p = *p + 1;
}

 int y = 3;

 addOne(&y);

y is now = 4

CS61C L03 Introduction to C (pt 1) (26) Garcia, Spring 2007 © UCB

Pointers

•Pointers are used to point to any data
type (int, char, a struct, etc.).
•Normally a pointer can only point to
one type (int, char, a struct, etc.).
•void * is a type that can point to
anything (generic pointer)

• Use sparingly to help avoid program
bugs… and security issues… and a lot
of other bad things!

CS61C L03 Introduction to C (pt 1) (27) Garcia, Spring 2007 © UCB

Peer Instruction Question

void main(); {
 int *p, x=5, y; // init
 y = *(p = &x) + 10;
 int z;
 flip-sign(p);
 printf("x=%d,y=%d,p=%d\n",x,y,p);
}
flip-sign(int *n){*n = -(*n)}

How many syntax/logic errors?

#Errors
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

CS61C L03 Introduction to C (pt 1) (28) Garcia, Spring 2007 © UCB

Peer Instruction Answer

void main(); {
 int *p, x=5, y; // init
 y = *(p = &x) + 10;
 int z;
 flip-sign(p);
 printf("x=%d,y=%d,p=%d\n",x,y,*p);
}
flip-sign(int *n){*n = -(*n);}

How many syntax/logic errors? I get 5.
(signed printing of pointer illogical)

#Errors
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

CS61C L03 Introduction to C (pt 1) (29) Garcia, Spring 2007 © UCB

And in conclusion…

•All declarations go at the beginning of
each function.
•Only 0 and NULL evaluate to FALSE.
•All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.
•A pointer is a C version of the
address.
* “follows” a pointer to its value
& gets the address of a value

