
CS61C L04 Introduction to C (pt 2) (1) Garcia, Spring 2007 © UCB

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 4 – Introduction to
the C Programming Language (pt 2)

 2007-01-24
There is one handout
today at the front and

back of the room!

“Immortal computing”?! ⇒
Microsoft is working on a cool project

 which would “let people store digital information in
durable physical artifacts and other forms to be preserved

and revealed to future generations, and maybe even
future civilizations … in one possible use, tombstones.”

en.wikipedia.org/wiki/Voyager_Golden_Record
slashdot.org/articles/07/01/22/208204.shtml

CS61C L04 Introduction to C (pt 2) (2) Garcia, Spring 2007 © UCB

Review

•All declarations go at the beginning of
each function except if you use C99.
•Only 0 and NULL evaluate to FALSE.
•All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.
•A pointer is a C version of the
address.
* “follows” a pointer to its value
& gets the address of a value

CS61C L04 Introduction to C (pt 2) (3) Garcia, Spring 2007 © UCB

Pointers & Allocation (1/2)

•After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything
yet (it actually points somewhere - but
don’t know where!). We can either:

• make it point to something that already
exists, or

• allocate room in memory for something
new that it will point to… (next time)

CS61C L04 Introduction to C (pt 2) (4) Garcia, Spring 2007 © UCB

Pointers & Allocation (2/2)

•Pointing to something that already
exists:
int *ptr, var1, var2;
var1 = 5;
ptr = &var1;
var2 = *ptr;

•var1 and var2 have room implicitly
allocated for them.

ptr var1 ? var2 ?5 5?

CS61C L04 Introduction to C (pt 2) (5) Garcia, Spring 2007 © UCB

More C Pointer Dangers

•Declaring a pointer just allocates
space to hold the pointer – it does not
allocate something to be pointed to!
•Local variables in C are not initialized,
they may contain anything.
•What does the following code do?

void f()
{
 int *ptr;
 *ptr = 5;
}

CS61C L04 Introduction to C (pt 2) (6) Garcia, Spring 2007 © UCB

Arrays (1/6)

•Declaration:
int ar[2];

declares a 2-element integer array. An
array is really just a block of memory.
 int ar[] = {795, 635};
declares and fills a 2-elt integer array.
•Accessing elements:

ar[num];

returns the numth element.

CS61C L04 Introduction to C (pt 2) (7) Garcia, Spring 2007 © UCB

Arrays (2/6)

•Arrays are (almost) identical to
pointers
•char *string and char string[] are
nearly identical declarations

• They differ in very subtle ways:
incrementing, declaration of filled arrays

•Key Concept: An array variable is a
“pointer” to the first element.

CS61C L04 Introduction to C (pt 2) (8) Garcia, Spring 2007 © UCB

Arrays (3/6)
•Consequences:

•ar is an array variable but looks like a
pointer in many respects (though not all)
•ar[0] is the same as *ar
•ar[2] is the same as *(ar+2)
• We can use pointer arithmetic to access
arrays more conveniently.

•Declared arrays are only allocated
while the scope is valid

char *foo() {
 char string[32]; ...;
 return string;
} is incorrect

CS61C L04 Introduction to C (pt 2) (9) Garcia, Spring 2007 © UCB

Arrays (4/6)

•Array size n; want to access from 0 to
n-1, but test for exit by comparing to
address one element past the array
 int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)
 /* sum = sum + *p; p = p + 1; */

sum += *p++;
• Is this legal?

•C defines that one element past end of
array must be a valid address, i.e., not
cause an bus error or address error

CS61C L04 Introduction to C (pt 2) (10) Garcia, Spring 2007 © UCB

Arrays (5/6)

•Array size n; want to access from 0 to
n-1, so you should use counter AND
utilize a constant for declaration & incr

• Wrong
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

• Right
#define ARRAY_SIZE 10
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

•Why? SINGLE SOURCE OF TRUTH
• You’re utilizing indirection and avoiding
maintaining two copies of the number 10

CS61C L04 Introduction to C (pt 2) (11) Garcia, Spring 2007 © UCB

Arrays (6/6)

•Pitfall: An array in C does not know its
own length, & bounds not checked!

• Consequence: We can accidentally
access off the end of an array.

• Consequence: We must pass the array
and its size to a procedure which is
going to traverse it.

•Segmentation faults and bus errors:
• These are VERY difficult to find;
be careful! (You’ll learn how to debug
these in lab…)

CS61C L04 Introduction to C (pt 2) (12) Garcia, Spring 2007 © UCB

Pointer Arithmetic (1/4)

•Since a pointer is just a mem address, we
can add to it to traverse an array.
•p+1 returns a ptr to the next array elt.
•*p++ vs (*p)++ ?

• x = *p++ ⇒ x = *p ; p = p + 1;
• x = (*p)++ ⇒ x = *p ; *p = *p + 1;

•What if we have an array of large structs
(objects)?

• C takes care of it: In reality, p+1 doesn’t add
1 to the memory address, it adds the size of
the array element.

CS61C L04 Introduction to C (pt 2) (13) Garcia, Spring 2007 © UCB

Pointer Arithmetic (2/4)
•So what’s valid pointer arithmetic?

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array).
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that
the pointer points to nothing).

•Everything else is illegal since it
makes no sense:

• adding two pointers
• multiplying pointers
• subtract pointer from integer

CS61C L04 Introduction to C (pt 2) (14) Garcia, Spring 2007 © UCB

int get(int array[], int n)
{
 return (array[n]);

/* OR */
 return *(array + n);
}

Pointer Arithmetic (3/4)

•C knows the size of the thing a pointer
points to – every addition or
subtraction moves that many bytes.

• 1 byte for a char, 4 bytes for an int, etc.

•So the following are equivalent:

CS61C L04 Introduction to C (pt 2) (15) Garcia, Spring 2007 © UCB

Pointer Arithmetic (4/4)

•We can use pointer arithmetic to
“walk” through memory:
void copy(int *from, int *to, int n) {
 int i;
 for (i=0; i<n; i++) {
 *to++ = *from++;
 }
}

CS61C L04 Introduction to C (pt 2) (16) Garcia, Spring 2007 © UCB

Pointers in C
•Why use pointers?

• If we want to pass a huge struct or array,
it’s easier to pass a pointer than the
whole thing.

• In general, pointers allow cleaner, more
compact code.

•So what are the drawbacks?
• Pointers are probably the single largest
source of bugs in software, so be careful
anytime you deal with them.

• Dangling reference (premature free)
• Memory leaks (tardy free)

CS61C L04 Introduction to C (pt 2) (17) Garcia, Spring 2007 © UCB

Administrivia
•Read K&R 6 by the next lecture
•There is a language called D!

• www.digitalmars.com/d/

•Answers to the reading quizzes?
• Ask your TA in discussion

•Homework expectations
• Readers don’t have time to fix your
programs which have to run on lab
machines.

• Code that doesn’t compile or fails all of
the autograder tests ⇒ 0

CS61C L04 Introduction to C (pt 2) (18) Garcia, Spring 2007 © UCB

C Strings

•A string in C is just an array of
characters.

char string[] = "abc";

•How do you tell how long a string is?
• Last character is followed by a 0 byte
(null terminator)
int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0) n++;
 return n;
}

CS61C L04 Introduction to C (pt 2) (19) Garcia, Spring 2007 © UCB

Arrays vs. Pointers

•An array name is a read-only pointer
to the 0th element of the array.
•An array parameter can be declared as
an array or a pointer; an array
argument can be passed as a pointer.

int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

int strlen(char *s)
{
 int n = 0;
 while (s[n] != 0)
 n++;
 return n;
}

Could be written:
while (s[n])

CS61C L04 Introduction to C (pt 2) (20) Garcia, Spring 2007 © UCB

Peer Instruction Question

void main(); {
 int *p, x=5, y; // init
 y = *(p = &x) + 10;
 int z;
 flip-sign(p);
 printf("x=%d,y=%d,p=%d\n",x,y,p);
}
flip-sign(int *n){*n = -(*n)}

How many syntax/logic errors in this C99 code?

#Errors
 0
 1
 2
 3
 4
 5
 6
 7

CS61C L04 Introduction to C (pt 2) (22) Garcia, Spring 2007 © UCB

Pointer Arithmetic Peer Instruction Q

How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

#invalid
 1
 2
 3
 4
 5
 6
 7
 8
 9
(1)0

CS61C L04 Introduction to C (pt 2) (24) Garcia, Spring 2007 © UCB

“And in Conclusion…”
•Pointers and arrays are virtually same
•C knows how to increment pointers
•C is an efficient language, with little
protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is
more overhead for the programmer.

• “C gives you a lot of extra rope but be
careful not to hang yourself with it!”

CS61C L04 Introduction to C (pt 2) (25) Garcia, Spring 2007 © UCB

Bonus slides

•These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.
•The slides will appear in the order they
would have in the normal presentation

CS61C L04 Introduction to C (pt 2) (26) Garcia, Spring 2007 © UCB

Pointers

•Pointers are used to point to any data
type (int, char, a struct, etc.).
•Normally a pointer can only point to
one type (int, char, a struct, etc.).
•void * is a type that can point to
anything (generic pointer)

• Use sparingly to help avoid program
bugs… and security issues… and a lot
of other bad things!

CS61C L04 Introduction to C (pt 2) (27) Garcia, Spring 2007 © UCB

Administrivia
• Slip days

• You get 3 “slip days” per year to use for any
homework assignment or project

• They are used at 1-day increments. Thus 1
minute late = 1 slip day used.

• They’re recorded automatically (by checking
submission time) so you don’t need to tell us
when you’re using them

• Once you’ve used all of your slip days, when a
project/hw is late, it’s … 0 points.

• If you submit twice, we ALWAYS grade the
latter, and deduct slip days appropriately

• You no longer need to tell anyone how your dog
ate your computer.

• You should really save for a rainy day … we all
get sick and/or have family emergencies!

CS61C L04 Introduction to C (pt 2) (28) Garcia, Spring 2007 © UCB

Pointer Arithmetic Summary
• x = *(p+1) ?

⇒ x = *(p+1) ;
• x = *p+1 ?

⇒ x = (*p) + 1 ;
• x = (*p)++ ?

⇒ x = *p ; *p = *p + 1;
• x = *p++ ? (*p++) ? *(p)++ ? *(p++) ?

⇒ x = *p ; p = p + 1;
• x = *++p ?

⇒ p = p + 1 ; x = *p ;

• Lesson?
• Using anything but the standard *p++ , (*p)++

causes more problems than it solves!

CS61C L04 Introduction to C (pt 2) (29) Garcia, Spring 2007 © UCB

Segmentation Fault vs Bus Error?
• http://www.hyperdictionary.com/
• Bus Error

• A fatal failure in the execution of a machine
language instruction resulting from the
processor detecting an anomalous condition on
its bus. Such conditions include invalid address
alignment (accessing a multi-byte number at an
odd address), accessing a physical address that
does not correspond to any device, or some
other device-specific hardware error. A bus
error triggers a processor-level exception which
Unix translates into a “SIGBUS” signal which, if
not caught, will terminate the current process.

• Segmentation Fault
• An error in which a running Unix program

attempts to access memory not allocated to it
and terminates with a segmentation violation
error and usually a core dump.

CS61C L04 Introduction to C (pt 2) (30) Garcia, Spring 2007 © UCB

C Pointer Dangers
•Unlike Java, C lets you cast a value of
any type to any other type without
performing any checking.

int x = 1000;

int *p = x; /* invalid */

int *q = (int *) x; /* valid */

•The first pointer declaration is invalid
since the types do not match.
•The second declaration is valid C but is
almost certainly wrong

• Is it ever correct?

CS61C L04 Introduction to C (pt 2) (31) Garcia, Spring 2007 © UCB

C Strings Headaches
•One common mistake is to forget to
allocate an extra byte for the null
terminator.
•More generally, C requires the
programmer to manage memory
manually (unlike Java or C++).

• When creating a long string by
concatenating several smaller strings,
the programmer must insure there is
enough space to store the full string!

• What if you don’t know ahead of time
how big your string will be?

• Buffer overrun security holes!

CS61C L04 Introduction to C (pt 2) (32) Garcia, Spring 2007 © UCB

Common C Error

•There is a difference between
assignment and equality
a = b is assignment
a == b is an equality test

•This is one of the most common
errors for beginning C programmers!

CS61C L04 Introduction to C (pt 2) (33) Garcia, Spring 2007 © UCB

C String Standard Functions

• int strlen(char *string);
• compute the length of string

• int strcmp(char *str1, char *str2);
• return 0 if str1 and str2 are identical (how is

this different from str1 == str2?)

• char *strcpy(char *dst, char *src);
• copy the contents of string src to the memory

at dst. The caller must ensure that dst has
enough memory to hold the data to be copied.

