
CS61C L05 Introduction to C (pt 3) (1) Garcia, Spring 2007 © UCB

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

 Lecture 5 – Introduction to C (pt 3)
C Memory Management

 2007-01-26
There is one handout
today at the front and

back of the room!

Norway: iTunes illegal! ⇒
Norway ruled that iTunes was

illegal because it did not allow downloaded
songs encoded with their proprietary Fairplay

system to be played on non-iPods. They are
asking Apple to open their system up by Oct 1.

www.msnbc.msn.com/id/16793043/

CS61C L05 Introduction to C (pt 3) (2) Garcia, Spring 2007 © UCB

Review
•Pointers and arrays are virtually same
•C knows how to increment pointers
•C is an efficient language, with little
protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is
more overhead for the programmer.

• “C gives you a lot of extra rope but be
careful not to hang yourself with it!”

CS61C L05 Introduction to C (pt 3) (3) Garcia, Spring 2007 © UCB

C Strings

•A string in C is just an array of
characters.

char string[] = "abc";

•How do you tell how long a string is?
• Last character is followed by a 0 byte
(null terminator)
int strlen(char s[])
{
 int n = 0;
 while (s[n] != 0) n++;
 return n;
}

CS61C L05 Introduction to C (pt 3) (4) Garcia, Spring 2007 © UCB

Pointers (1/4)

•Sometimes you want to have a
procedure increment a variable?
•What gets printed?

void AddOne(int x)
{ x = x + 1; }

int y = 5;
AddOne(y);
printf(“y = %d\n”, y);

y = 5

…review…

CS61C L05 Introduction to C (pt 3) (5) Garcia, Spring 2007 © UCB

Pointers (2/4)

•Solved by passing in a pointer to our
subroutine.
•Now what gets printed?

void AddOne(int *p)
{ *p = *p + 1; }

int y = 5;
AddOne(&y);
printf(“y = %d\n”, y);

y = 6

…review…

CS61C L05 Introduction to C (pt 3) (6) Garcia, Spring 2007 © UCB

Pointers (3/4)

•But what if what you want changed is
a pointer?
•What gets printed?

void IncrementPtr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

CS61C L05 Introduction to C (pt 3) (7) Garcia, Spring 2007 © UCB

Pointers (4/4)

•Solution! Pass a pointer to a pointer,
declared as **h
•Now what gets printed?

void IncrementPtr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
IncrementPtr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

CS61C L05 Introduction to C (pt 3) (8) Garcia, Spring 2007 © UCB

Dynamic Memory Allocation (1/4)
• C has operator sizeof() which gives size in bytes

(of type or variable)
• Assume size of objects can be misleading and is bad

style, so use sizeof(type)
• Many years ago an int was 16 bits, and programs were

written with this assumption.
• What is the size of integers now?

• “sizeof” knows the size of arrays:
int ar[3]; // Or: int ar[] = {54, 47, 99}
sizeof(ar) ⇒ 12

• …as well for arrays whose size is determined at run-time:
int n = 3;

int ar[n]; // Or: int ar[fun_that_returns_3()];
sizeof(ar) ⇒ 12

CS61C L05 Introduction to C (pt 3) (9) Garcia, Spring 2007 © UCB

Dynamic Memory Allocation (2/4)
•To allocate room for something new to
point to, use malloc() (with the help of a
typecast and sizeof):
ptr = (int *) malloc (sizeof(int));

• Now, ptr points to a space somewhere in
memory of size (sizeof(int)) in bytes.
•(int *) simply tells the compiler what will
go into that space (called a typecast).

•malloc is almost never used for 1 var
ptr = (int *) malloc (n*sizeof(int));

• This allocates an array of n integers.

CS61C L05 Introduction to C (pt 3) (10) Garcia, Spring 2007 © UCB

Dynamic Memory Allocation (3/4)
•Once malloc() is called, the memory
location contains garbage, so don’t
use it until you’ve set its value.
•After dynamically allocating space, we
must dynamically free it:
free(ptr);

•Use this command to clean up.
• Even though the program frees all
memory on exit (or when main returns),
don’t be lazy!

• You never know when your main will get
transformed into a subroutine!

CS61C L05 Introduction to C (pt 3) (11) Garcia, Spring 2007 © UCB

Dynamic Memory Allocation (4/4)
• The following two things will cause your program

to crash or behave strangely later on, and cause
VERY VERY hard to figure out bugs:
•free()ing the same piece of memory twice
• calling free() on something you didn’t get back from
malloc()

• The runtime does not check for these mistakes
• Memory allocation is so performance-critical that there

just isn’t time to do this
• The usual result is that you corrupt the memory

allocator’s internal structure
• You won’t find out until much later on, in a totally

unrelated part of your code!

CS61C L05 Introduction to C (pt 3) (12) Garcia, Spring 2007 © UCB

Binky Pointer Video (thanks to NP @ SU)

CS61C L05 Introduction to C (pt 3) (13) Garcia, Spring 2007 © UCB

Arrays not implemented as you’d think

void foo() {
int *p, *q, x, a[1]; // a[] = {3} also works here
p = (int *) malloc (sizeof(int));
q = &x;

*p = 1; // p[0] would also work here
*q = 2; // q[0] would also work here
*a = 3; // a[0] would also work here

printf("*p:%u, p:%u, &p:%u\n", *p, p, &p);
printf("*q:%u, q:%u, &q:%u\n", *q, q, &q);
printf("*a:%u, a:%u, &a:%u\n", *a, a, &a);

}

? ? 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 ...

p q x a
? ? ?

unnamed-malloc-space
52 32 2 3 1

*p:1, p:52, &p:24
*q:2, q:32, &q:28
*a:3, a:36, &a:36

CS61C L05 Introduction to C (pt 3) (14) Garcia, Spring 2007 © UCB

C structures : Overview
•A struct is a data structure
composed from simpler data types.

• Like a class in Java/C++ but without
methods or inheritance.

struct point { /* type definition */
 int x;
 int y;
};

void PrintPoint(struct point p)
{
 printf(“(%d,%d)”, p.x, p.y);
}

struct point p1 = {0,10}; /* x=0, y=10 */

PrintPoint(p1);

As always in C, the argument is passed by “value” – a copy is made.

CS61C L05 Introduction to C (pt 3) (15) Garcia, Spring 2007 © UCB

C structures: Pointers to them

•Usually, more efficient to pass a
pointer to the struct.
•The C arrow operator (->)
dereferences and extracts a structure
field with a single operator.
•The following are equivalent:

struct point *p;
 /* code to assign to pointer */
printf(“x is %d\n”, (*p).x);
printf(“x is %d\n”, p->x);

CS61C L05 Introduction to C (pt 3) (16) Garcia, Spring 2007 © UCB

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta
1. Kind Meek Giggles Tease Peering Excited Zealous Youngsters. – Yiding J
2. Kissing me gives tears per extra zebra YO! – Peter D
3. Kiss me, gimme tea, persistently extol zee. You! – Hava E
4. Kia Mechanics (are) Giant Terrible People Exclaiming Zealous Yodels. – Gary M
5. Kiss me, gimme tea, pet exaltingly, zestful you. – Hava E
6. Kid meets giant Texas people exercising zen-like yoga. -Rolf O
7. Kicking methods gives teaching people extra zest, youbetcha! – Peter D
8. Kind men give ten percent extra, zestfully, youthfully. – Hava E
9. Kissing Mentors Gives Testy Persistent Extremists Zealous Youthfulness. – Gary M
10. Kindness means giving, teaching, permeating excess zeal yourself. – Hava E
11. Kissing me gives ten percent extra zeal & youth! – Dan (taking ideas from all)

1. Killing messengers gives terrible people exactly zero, yo
2. Kindergarten means giving teachers perfect examples (of) zeal (&) youth
3. Kissing mediocre girls/guys teaches people (to) expect zero (from) you
4. Kinky Mean Girls Teach Penis-Extending Zen Yoga
5. Kissing Mel Gibson, Teddy Pendergrass exclaimed: “Zesty, yo!” – Dan Garcia

CS61C L05 Introduction to C (pt 3) (17) Garcia, Spring 2007 © UCB

Pointer Arithmetic Peer Instruction Q

How many of the following are invalid?
I. pointer + integer
II. integer + pointer
III. pointer + pointer
IV. pointer – integer
V. integer – pointer
VI. pointer – pointer
VII. compare pointer to pointer
VIII. compare pointer to integer
IX. compare pointer to 0
X. compare pointer to NULL

#invalid
 1
 2
 3
 4
 5
 6
 7
 8
 9
(1)0

CS61C L05 Introduction to C (pt 3) (19) Garcia, Spring 2007 © UCB

Which are guaranteed to print out 5?
I: main() {
 int *a-ptr; *a-ptr = 5; printf(“%d”, *a-ptr); }

II: main() {
 int *p, a = 5;
 p = &a; ...
 /* code; a & p NEVER on LHS of = */
 printf(“%d”, a); }

III: main() {
 int *ptr;
 ptr = (int *) malloc (sizeof(int));
 *ptr = 5;
 printf(“%d”, *ptr); }

Peer Instruction

 I II III
0: - - -
1: - - YES
2: - YES -
3: - YES YES
4: YES - -
5: YES - YES
6: YES YES -
7: YES YES YES

CS61C L05 Introduction to C (pt 3) (20) Garcia, Spring 2007 © UCB

int main(void){
int A[] = {5,10};
int *p = A;

printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);
 p = p + 1;
printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);
*p = *p + 1;
printf(“%u %d %d %d\n”,p,*p,A[0],A[1]);
}

If the first printf outputs 100 5 5 10, what will the other two
printf output?
1: 101 10 5 10 then 101 11 5 11
2: 104 10 5 10 then 104 11 5 11
3: 101 <other> 5 10 then 101 <3-others>
4: 104 <other> 5 10 then 104 <3-others>
5: One of the two printfs causes an ERROR
6: I surrender!

Peer Instruction

A[1]
5 10

A[0] p

CS61C L05 Introduction to C (pt 3) (21) Garcia, Spring 2007 © UCB

“And in Conclusion…”

•Use handles to change pointers
•Create abstractions with structures
•Dynamically allocated heap memory
must be manually deallocated in C.

• Use malloc() and free() to allocate
and deallocate memory from heap.

CS61C L05 Introduction to C (pt 3) (22) Garcia, Spring 2007 © UCB

Bonus slides

•These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.
•The slides will appear in the order they
would have in the normal presentation

CS61C L05 Introduction to C (pt 3) (23) Garcia, Spring 2007 © UCB

How big are structs?

•Recall C operator sizeof() which
gives size in bytes (of type or variable)
•How big is sizeof(p)?
 struct p {

char x;
int y;

};
• 5 bytes? 8 bytes?
• Compiler may word align integer y

CS61C L05 Introduction to C (pt 3) (24) Garcia, Spring 2007 © UCB

Linked List Example

•Let’s look at an example of using
structures, pointers, malloc(), and
free() to implement a linked list of
strings.
/* node structure for linked list */
struct Node {
 char *value;
 struct Node *next;
};

Recursive
definition!

CS61C L05 Introduction to C (pt 3) (25) Garcia, Spring 2007 © UCB

typedef simplifies the code
struct Node {
 char *value;
 struct Node *next;
};

/* "typedef" means define a new type */
typedef struct Node NodeStruct;

 … OR …
typedef struct Node {
 char *value;
 struct Node *next;
} NodeStruct;

… THEN

 typedef NodeStruct *List;
 typedef char *String;

/* Note similarity! */
/* To define 2 nodes */

struct Node {
 char *value;
 struct Node *next;
} node1, node2;

String value;

CS61C L05 Introduction to C (pt 3) (26) Garcia, Spring 2007 © UCB

Linked List Example
/* Add a string to an existing list */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

{
 String s1 = "abc", s2 = "cde";
 List theList = NULL;
 theList = cons(s2, theList);
 theList = cons(s1, theList);
/* or, just like (cons s1 (cons s2 nil)) */
 theList = cons(s1, cons(s2, NULL));

CS61C L05 Introduction to C (pt 3) (27) Garcia, Spring 2007 © UCB

Linked List Example
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:
list:

"abc"

… …
NULL?

s:

CS61C L05 Introduction to C (pt 3) (28) Garcia, Spring 2007 © UCB

Linked List Example
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:
list:

"abc"

… …
NULL?

? s:

CS61C L05 Introduction to C (pt 3) (29) Garcia, Spring 2007 © UCB

Linked List Example
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:
list:

"abc"

… …
NULL

?
"????"

s:

CS61C L05 Introduction to C (pt 3) (30) Garcia, Spring 2007 © UCB

Linked List Example
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:
list:

"abc"

… …
NULL

?
"abc"

s:

CS61C L05 Introduction to C (pt 3) (31) Garcia, Spring 2007 © UCB

Linked List Example
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node:
list:

s:
"abc"

… …
NULL

"abc"

CS61C L05 Introduction to C (pt 3) (32) Garcia, Spring 2007 © UCB

Linked List Example
/* Add a string to an existing list, 2nd call */
List cons(String s, List list)
{
 List node = (List) malloc(sizeof(NodeStruct));

 node->value = (String) malloc (strlen(s) + 1);
 strcpy(node->value, s);
 node->next = list;
 return node;
}

node: … …
NULL

"abc"

s:
"abc"

CS61C L05 Introduction to C (pt 3) (33) Garcia, Spring 2007 © UCB

Pointer Arithmetic Summary
• x = *(p+1) ?

⇒ x = *(p+1) ;
• x = *p+1 ?

⇒ x = (*p) + 1 ;
• x = (*p)++ ?

⇒ x = *p ; *p = *p + 1;
• x = *p++ ? (*p++) ? *(p)++ ? *(p++) ?

⇒ x = *p ; p = p + 1;
• x = *++p ?

⇒ p = p + 1 ; x = *p ;

• Lesson?
• These cause more problems than they solve!

CS61C L05 Introduction to C (pt 3) (34) Garcia, Spring 2007 © UCB

Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta
• Kim’s melodious giddiness terrifies people, excepting zealous yodelers

• Kirby Messed Gigglypuff Terribly, (then) Perfectly Exterminated Zelda and Yoshi

• Killed meat gives teeth peace except zebra yogurt

• Kind Men Give Tense People Extra Zeal (for) Yoga

• Killing melee gives terror; peace exhibits Zen yoga

• Young Zebras Exclaim, “People Teach {Giraffes, Girls} Messy Kissing!” – Omar Akkawi

• “King me,” Gina tells Perry, expert zebra yodeler – Diana Ko

• Kirk met Gibson’s team, perilously expecting zealous youngsters – Diana Ko

• Kind Men Give Ten Percent Expressly Zee Yoorphans – Daniel Gallagher

• King Mel Gibson Tells People “Examine Ze Yoodle!” – Daniel Gallagher

• Kizzle Meh Gizzle The Pezzle Exizzle Zeh Yo! – Daniel Gallagher

• Killer Mechanical { Giraffe / Giant } Teaches Pet, Extinct Zebra, to Yodel – Larry Ly

• Kilted Men Given Testosterone Perform Exceedingly Zealous Yoga –David Wu

