inst.eecs.berkeley.edu/~cs61c

CS61C : Machine Structures

Lecture 12 - Introduction to MIPS Procedures II \& Logical Ops

2007-02-12

Lecturer SOE Dan Garcia

wWw . cs . berkeley . edu/~ddgarcia
Optics on a chip! \Rightarrow Researchers at MIT just announced a techinique to "integrate photonic circuitry on a silicon chip ... for performance inconveivable by electronic means alone." Polarization sensitivity is the key. Let there be light!

Review

- Functions called with jal, return with jr \$ra.
- The stack is your friend: Use it to save anything you need. Just be sure to leave it the way you found it.
- Instructions we know so far

Arithmetic: add, addi, sub, addu, addiu, subu
Memory: lw, sw
Decision: beq, bne, slt, slti, sltu, sltiu Unconditional Branches (Jumps): j, jal, jr

- Registers we know so far
- All of them!
- There are CONVENTIONS when calling procedures!

Register Conventions (1/4)

-CalleR: the calling function
-Calle \underline{E} : the function being called
-When callee returns from executing, the caller needs to know which registers may have changed and which are guaranteed to be unchanged.

- Register Conventions: A set of generally accepted rules as to which registers will be unchanged after a procedure call (jal) and which may be changed.

Register Conventions (2/4) - saved

- \$0: No Change. Always 0.
- $\$ \mathbf{s} 0-\$ \mathrm{~s} 7$: Restore if you change. Very important, that's why they're called saved registers. If the callee changes these in any way, it must restore the original values before returning.
- \$sp: Restore if you change. The stack pointer must point to the same place before and after the jal call, or else the caller won't be able to restore values from the stack.

Register Conventions (3/4) - volatile

- \$ra: Can Change. The jal call itself will change this register. Caller needs to save on stack if nested call.
- \$v0-\$v1: Can Change. These will contain the new returned values.
- \$a0-\$a3: Can change. These are volatile argument registers. Caller needs to save if they are needed after the call.
- \$t0-\$t9: Can change. That's why they're called temporary any procedure may change them at any time. Caller needs to save if they'll need them afterwards.

Register Conventions (4/4)

-What do these conventions mean?

- If function R calls function E, then function R must save any temporary registers that it may be using onto the stack before making a jal call.
- Function E must save any S (saved) registers it intends to use before garbling up their values
- Remember: Caller/callee need to save only temporary/saved registers they are using, not all registers.

Parents leaving for weekend analogy (1/5)

- Parents (main) leaving for weekend
-They (caller) give keys to the house to kid (callee) with the rules (calling conventions):
- You can trash the temporary room(s), like the den and basement (registers) if you want, we don't care about it
- BUT you'd better leave the rooms (registers) that we want to save for the guests untouched. "these rooms better look the same when we return!"

Parents leaving for weekend analogy (2/5)

- Kid now "owns" rooms (registers)
- Kid wants to use the saved rooms for a wild, wild party (computation)
-What does kid (callee) do?
- Kid takes what was in these rooms and puts them in the garage (memory)
- Kid throws the party, trashes everything (except garage, who ever goes in there?)
- Kid restores the rooms the parents wanted saved after the party by replacing the iltems from the garage (memory) back into those saved rooms

Parents leaving for weekend analogy (3/5)

- Same scenario, except before parents return and kid replaces saved rooms...
- Kid (callee) has left valuable stuff (data) all over.
- Kid's friend (another callee) wants the house for a party when the kid is away
- Kid knows that friend might trash the place destroying valuable stuff!
- Kid remembers rule parents taught and now becomes the "heavy" (caller), instructing friend (callee) on good rules (conventions) of house.

Parents leaving for weekend analogy (4/5)

- If kid had data in temporary rooms (which were going to be trashed), there are three options:
- Move items directly to garage (memory)
- Move items to saved rooms whose contents have already been moved to the garage (memory)
- Optimize lifestyle (code) so that the amount you've got to shlep stuff back and forth from garage (memory) is minimized

Otherwise: "Dude, where's my data?!"

Parents leaving for weekend analogy (5/5)

- Friend now "owns" rooms (registers)
- Friend wants to use the saved rooms for a wild, wild party (computation)
-What does friend (callee) do?
- Friend takes what was in these rooms and puts them in the garage (memory)
- Friend throws the party, trashes everything (except garage)
- Friend restores the rooms the kid wanted saved after the party by replacing the items from the garage (memory) back into those saved rooms

Administrivia

- Homework 3 due wednesday

Bitwise Operations

- Up until now, we've done arithmetic (add, sub, addi), memory access (lw and sw), and branches and jumps.
- All of these instructions view contents of register as a single quantity (such as a signed or unsigned integer)
- New Perspective: View register as 32 raw bits rather than as a single 32-bit number
- Since registers are composed of 32 bits, we may want to access individual bits (or groups of bits) rather than the whole.
- Introduce two new classes of instructions:

Logical Operators (1/3)

-Two basic logical operators:

- AND: outputs 1 only if both inputs are 1
- OR: outputs 1 if at least one input is 1
-Truth Table: standard table listing all possible combinations of inputs and resultant output for each. E.g.,

A	B	A AND B	A OR B
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Logical Operators (2/3)

- Logical Instruction Syntax:

1 2,3,4

- where

1) operation name
2) register that will receive value
3) first operand (register)
4) second operand (register) or immediate (numerical constant)

- In general, can define them to accept > 2 inputs, but in the case of MIPS assembly, these accept exactly 2 inputs and produce 1 output
- Again, rigid syntax, simpler hardware

Logical Operators (3/3)

- Instruction Names:
- and, or: Both of these expect the third argument to be a register
- andi, ori: Both of these expect the third argument to be an immediate
- MIPS Logical Operators are all bitwise, meaning that bit 0 of the output is produced by the respective bit 0's of the inputs, bit 1 by the bit 1's, etc.
-C: Bitwise AND is \& (e.g., $z=x \& y$;)
- C: Bitwise OR is \| (e.g., $z=x \mid y$ i)

Uses for Logical Operators (1/3)

- Note that anding a bit with 0 produces a 0 at the output while anding a bit with 1 produces the original bit.
- This can be used to create a mask.
- Example:

10110110101001000011110110011010
mask:0000 0000000000000000111111111111

- The result of anding these:

00000000000000000000110110011010
mask last 12 bits

Uses for Logical Operators (2/3)

- The second bitstring in the example is called a mask. It is used to isolate the rightmost 12 bits of the first bitstring by masking out the rest of the string (e.g. setting it to all 0 s).
-Thus, the and operator can be used to set certain portions of a bitstring to 0 s , while leaving the rest alone.
- In particular, if the first bitstring in the above example were in $\$ t 0$, then the following instruction would mask it:

andi $\$ t 0, \$ t 0,0 \times F F F$

Uses for Logical Operators (3/3)

- Similarly, note that oring a bit with 1 produces a 1 at the output while oring a bit with 0 produces the original bit.
-This can be used to force certain bits of a string to 1 s .
- For example, if \$t0 contains 0×12345678, then after this instruction:
ori $\$ t 0, \$ t 0,0 x F F F F$
-... \$t0 contains $0 \times 1234 \mathrm{FFFF}$ (e.g. the high-order 16 bits are untouched, while the low-order 16 bits are forced to 1 s).

Shift Instructions (review) (1/4)

- Move (shift) all the bits in a word to the left or right by a number of bits.
- Example: shift right by 8 bits

00010010001101000101011001111000

00000000000100100011010001010110

- Example: shift left by 8 bits 00010010001101000101011001111000

00110100010101100111100000000000

Shift Instructions (2/4)

- Shift Instruction Syntax:

1 2,3,4

- where

1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant < 32)

- MIPS shift instructions:

1. sll (shift left logical): shifts left and fills emptied bits with Os
2. srl (shift right logical): shifts right and fills emptied bits with Os
3. sra (shift right arithmetic): shifts right and fills emptied bits by sign extending

Shift Instructions (3/4)

- Example: shift right arith by 8 bits 00010010001101000101011001111000

00000000000100100011010001010110

- Example: shift right arith by 8 bits

10010010001101000101011001111000

11111111100100100011010001010110

Shift Instructions (4/4)

- Since shifting may be faster than multiplication, a good compiler usually notices when C code multiplies by a power of 2 and compiles it to a shift instruction:
a *= 8; (in C)
would compile to:
sll $\$ \mathrm{~s} 0$, $\$ \mathrm{~s} 0,3$ (in MIPS)
- Likewise, shift right to divide by powers of 2 (rounds towards - ∞)
- remember to use sra

Peer Instruction

r:
 \#\#\# PUSH REGISTER(S) TO STACK?
jai e
\# Call e

jr \$ra
\# Return to caller of r
e:
 jr \$ra \# Return to r
What does r have to push on the stack before "jal e"?

| $0:$ | 0 | of | $(\$ s 0, \$ s p, \$ v 0, \$ t 0, \$ a 0, \$ r a)$ |
| :--- | :--- | :--- | :--- | :--- |
| $1:$ | 1 | of | $(\$ s 0, \$ s p, \$ v 0, \$ t 0, \$ a 0, \$ r a)$ |
| $2:$ | 2 | of | $(\$ s 0, \$ s p, \$ v 0, \$ t 0, \$ a 0, \$ r a)$ |
| $3:$ | 3 | of | $(\$ s 0, \$ s p, \$ v 0, \$ t 0, \$ a 0, \$ r a)$ |
| $4:$ | 4 | of | $(\$ s 0, \$ s p, \$ v 0, \$ t 0, \$ a 0, \$ r a)$ |
| $5:$ | 5 | of | $(\$ s 0, \$ s p, \$ v 0, \$ t 0, \$ a 0, \$ r a)$ |
| $6:$ | 6 | of | $(\$ s 0, \$ s p, \$ v 0, \$ t 0, \$ a 0, \$ r a)$ |

"And in Conclusion..."

- Register Conventions: Each register has a purpose and limits to its usage. Learn these and follow them, even if you're writing all the code yourself.
- Logical and Shift Instructions
- Operate on bits individually, unlike arithmetic, which operate on entire word.
- Use to isolate fields, either by masking or by shifting back and forth.
- Use shift left logical, sll ,for multiplication by powers of 2
- Use shift right arithmetic, sra,for division by powers of 2.
- New Instructions:

Col and, andi, or,ori, sll,srl,sra

Bonus slides

- These are extra slides that used to be included in lecture notes, but have been moved to this, the "bonus" area to serve as a supplement.
- The slides will appear in the order they would have in the normal presentation

Example: Fibonacci Numbers 1/8

- The Fibonacci numbers are defined as follows: $F(n)=F(n-1)+F(n-2)$, $F(0)$ and $F(1)$ are defined to be 1
- In scheme, this could be written:
(define (Fib n) (cond ($=\mathrm{n} 0$) 1)
(($=$ n 1) 1)

$$
\begin{aligned}
& \text { (else (+ (Fib (- n 1)) } \\
& \text { (Fib (-n 2))))) }
\end{aligned}
$$

Example: Fibonacci Numbers 2/8

- Rewriting this in C we have:
int fib(int n) \{
if $(n==0)\{$ return $1 ;\}$
if $(n==1)\{r e t u r n 1 ;\}$
return $(f i b(n-1)+f i b(n-2))$ i
\}

Example: Fibonacci Numbers 3/8

${ }^{\circ}$ Now, let's translate this to MIPS!
${ }^{\circ}$ You will need space for three words on the stack
${ }^{\circ}$ The function will use one \$s register, \$s0
${ }^{\circ}$ Write the Prologue:
fib:
addi $\$ s p, \$ s p,-12$ \# Space for three words
sw \$ra, $8(\$ s p) \quad \#$ Save return address
sw \$s0, 4(\$sp) \# Save s0

Example: Fibonacci Numbers 4/8

${ }^{\circ}$ Now write the Epilogue:

fin:

lw \$s0, 4(\$sp)
lw \$ra, $8(\$ \mathrm{sp})$
addi \$sp, \$sp, 12
jr \$ra
\# Restore \$s0
\# Restore return address
\# Pop the stack frame
\# Return to caller

Example: Fibonacci Numbers 5/8

${ }^{\circ}$ Finally, write the body. The C code is below. Start by translating the lines indicated in the comments

```
int fib(int n) {
    if(n == 0) { return 1; } /*Translate Me!*/
    if(n == 1) { return 1; } /*Translate Me!*/
    return (fib(n - 1) + fib(n - 2));
```

\}

Example: Fibonacci Numbers 6/8

${ }^{\circ}$ Almost there, but be careful, this part is tricky! int fib(int n) \{
return (fib(n - 1) + fib(n - 2));
\}

```
addi \(\$ \mathrm{a0}, \$ \mathrm{aO},-1 \quad \# \$ a 0=\mathbf{n - 1}\)
sw \$a0, \(0(\$ \mathrm{sp})\)
    jal fib
    1w \$a0, \(0(\$ \mathrm{sp})\)
    addi \$a0, \$a0, -1 \# \$a0=n-2
```


Example: Fibonacci Numbers 7/8

```
* Remember that $v0 is caller saved!
int fib(int n) {
    return (fib(n - 1) + fib(n - 2));
}
    add $s0, $v0, $zero # Place fib(n-1)
                                    # somewhere it won't get
                                    # clobbered
jal fib
    # fib(n-2)
    add $v0, $v0, $s0 # $v0 = fib(n-1) + fib(n-2)
```

 To the epilogue and beyond.

Example: Fibonacci Numbers 8/8

Here's the complete code for reference:
fib: addi \$sp, \$sp, -12

```
sw $ra, 8($sp)
sw $s0, 4($sp)
addi $v0, $zero, 1
beq $a0, $zero, fin
addi $t0, $zero, 1
beq $a0, $t0, fin
addi $a0, $a0, -1 fin: lw $s0, 4($sp)
sw $a0, O($sp)
jal fib
lw $a0, O($sp)
addi $a0, $a0, -1
add $s0, $v0, $zero
jal fib
add $v0, $v0, $s0
lw $ra, 8($sp)
addi $sp, $sp, 12
jr $ra
```


Bonus Example: Compile This (1/5)

```
main()
    int \(\mathbf{i}, \mathbf{j}, \mathbf{k}, \mathrm{m} ; ~ / *\) i-m:\$s0-\$s3 */
    \(i=\operatorname{mult}(j, k) ; \quad \ldots\)
\(m=\operatorname{mult}(i, i) ; \ldots\)
\}
```

int mult (int mcand, int mlier) \{
int product;
product $=0$;
while (mlier > O) \{
product $+=$ mcand;
mlier -= 1; \}
return product;
\}

Bonus Example: Compile This (2/5)

```
start:
```

add $\$ \mathrm{aO} 0$, s 1 , $\$ 0$
add $\$ \mathrm{a} 1, \$ \mathrm{~s} 2$, $\$ 0$
jal mult
add \$s0,\$v0,\$0
add $\$ \mathrm{aO}$, $\$ \mathrm{~s} 0$, $\$ 0$
add $\$ \mathrm{a} 1, \$ \mathrm{~s} 0$, $\$ 0$
jal mult
add \$s3,\$v0,\$0

$$
\begin{aligned}
& \text { \# arg0 = j } \\
& \text { \# argl }=k \\
& \text { \# call mult } \\
& \text { \# i }=\text { mult () }
\end{aligned}
$$

$$
\begin{aligned}
& \text { i }=\text { mult(} j, k \text {); } \\
& m=\operatorname{mult}(i, i) ; \ldots\}
\end{aligned}
$$

Bonus Example: Compile This (3/5)

- Notes:
- main function ends with a jump to exit, not jr \$ra, so there's no need to save \$ra onto stack
- all variables used in main function are saved registers, so there's no need to save these onto stack

Bonus Example: Compile This (4/5)

mult:
add $\$$ t0, \$0, \$0
Loop:

slt $\$ t 1, \$ 0, \$ \mathrm{a} 1$

beq \$t1,\$0,Fin
add \$t0,\$t0,\$a0
addi \$a1,\$a1,-1
j Loop
Fin:

add \$v0,\$t0,\$0

jr
prod=0

```
mlr
no=>Fin
prod+=mc
mlr-=1
goto Loop
```

\$v0=prod
return
int mult (int mcand, int mlier) $\{$
int product $=0$;
while (mlier > 0) \{
product += mcand;
mlier -= 1; \}
return product;
$\}$

Bonus Example: Compile This (5/5)

- Notes:

- no jal calls are made from mult and we don't use any saved registers, so we don't need to save anything onto stack
- temp registers are used for intermediate calculations (could have used s registers, but would have to save the caller's on the stack.)
- \$a1 is modified directly (instead of copying into a temp register) since we are free to change it
- result is put into \$v0 before returning (could also have modified \$v0 directly)

