inst.eecs.berkeley.edu/~cs61c
CS61C : Machine Structures

Lecture 15 Floating Point I

Hi to Enrique "Henry" 2007-02-16 Mendez from NJ... ("found you via iTunes search")

Lecturer SOE Dan Garcia

WWW . cs . berkeley . edu/~ddgarcia
UCB: heat to electricity! \Rightarrow "We have successfully generated electricity from heat by trapping organic molecules between metal nanoparticles, an achievement that could pave the way toward the

68development of a new source for energy."

www.berkeley.edu/news/media/releases/2007/02/15_heatelectricity.shtml
CS61C L15 Floating Point I (1)

Quote of the day

" 95% of the folks out there are completely clueless about floating-point."

James Gosling Sun Fellow Java Inventor 1998-02-28

Review of Numbers

- Computers are made to deal with numbers

- What can we represent in \mathbf{N} bits?
- 2^{N} things, and no more! They could be...
- Unsigned integers:

$$
\begin{array}{cc}
\mathbf{0} & \text { to } \quad \mathbf{2}^{\mathrm{N}}-\mathbf{1} \\
(\text { for } \mathrm{N}=32, & 2^{\mathrm{N}}-1 \\
=4,294,967,295)
\end{array}
$$

- Signed Integers (Two's Complement)

$$
-2^{(N-1)} \text { to } \quad 2^{(N-1)}-1
$$

(for $\left.N=32,2^{(N-1)}=2,147,483,648\right)$

What about other numbers?

1. Very large numbers? (seconds/millennium)

$$
\Rightarrow 31,556,926,000_{10}\left(3.1556926_{10} \times 10^{10}\right)
$$

2. Very small numbers? (Bohr radius) $\Rightarrow 0.0000000000529177_{10} \mathrm{~m}\left(5.29177_{10} \times 10^{-11}\right)$
3. Numbers with both integer \& fractional parts? $\Rightarrow 1.5$

First consider \#3.
...our solution will also help with 1 and 2.

Representation of Fractions

"Binary Point" like decimal point signifies boundary between integer and fractional parts:

Example 6-bit representation:

$10.1010_{2}=1 \times 2^{1}+1 \times 2^{-1}+1 \times 2^{-3}=2.625_{10}$
If we assume "fixed binary point", range of 6-bit representations with this format:

0 to 3.9375 (almost 4)

Fractional Powers of 2

i	2^{-i}	
0	1.0	1
1	0.5	$1 / 2$
2	0.25	$1 / 4$
3	0.125	$1 / 8$
4	0.0625	$1 / 16$
5	0.03125	$1 / 32$
6	0.015625	
7	0.0078125	
8	0.00390625	
9	0.001953125	
10	0.0009765625	
11	0.00048828125	
12	0.000244140625	
13	0.0001220703125	
14	0.00006103515625	
15	0.000030517578125	

Representation of Fractions with Fixed Pt.

What about addition and multiplication?

\author{

Addition is
 straightforward: \begin{tabular}{lll}
$\begin{array}{lll}\frac{00.100}{} & 0.510 \\
10.000 & 2.010\end{array}$

\hline

01.100 \& 1.5_{10}

00.100 \& 0.5_{10}
\end{tabular}
 Multiplication a bit more complex:
 00000
 01100

00000
$\underbrace{00000}_{\mathrm{HI}} \underbrace{000010000}_{\text {LOW }}$
}

Where's the answer, 0.11 ? (need to remember where point is)

Representation of Fractions

So far, in our examples we used a "fixed" binary point what we really want is to "float" the binary point. Why?

Floating binary point most effective use of our limited bits (and thus more accuracy in our number representation):
example: put 0.1640625 into binary. Represent as in
5-bits choosing where to put the binary point.

Store these bits and keep track of the binary point 2 places to the left of the MSB

Any other solution would lose accuracy!
With floating point rep., each numeral carries a exponent field recording the whereabouts of its binary point.

The binary point can be outside the stored bits, so very large and small numbers can be represented.

Scientific Notation (in Decimal)

- Normalized form: no leadings Os (exactly one digit to left of decimal point)
- Alternatives to representing $1 / 1,000,000,000$
- Normalized:
- Not normalized:
$0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Scientific Notation (in Binary)

- Computer arithmetic that supports it called floating point, because it represents numbers where the binary point is not fixed, as it is for integers
- Declare such variable in C as float

Floating Point Representation (1/2)

- Normal format: +1.xxxxxxxxxx ${ }_{\text {two }}$ * $^{\text {yyyy }_{\text {two }}}$ - Multiple of Word Size (32 bits)

- S represents Sign

Exponent represents y's
Significand represents x's

- Represent numbers as small as 2.0×10^{-38} to as large as 2.0×10^{38}

Floating Point Representation (2/2)

- What if result too large?
($>2.0 \times 10^{38},<-2.0 \times 10^{38}$)
- Overflow! \Rightarrow Exponent larger than represented in 8bit Exponent field
- What if result too small?
($>0 \&<2.0 \times 10^{-38},<0 \&>-2.0 \times 10^{-38}$)
- Underflow! \Rightarrow Negative exponent larger than represented in 8-bit Exponent field

- What would help reduce chances of overflow and/or underflow?

Double Precision FI. Pt. Representation

- Next Multiple of Word Size (64 bits)
$3130 \quad 2019$
S| Exponent
Significand
1 bit 11 bits 20 bits Significand (cont'd)

32 bits

- Double Precision (vs. Single Precision)
- C variable declared as double
- Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
- But primary advantage is greater accuracy due to larger significand

QUAD Precision FI. Pt. Representation

- Next Multiple of Word Size (128 bits)
- Unbelievable range of numbers
- Unbelievable precision (accuracy)
- Currently being worked on (IEEE 754r)
- Current version has 15 exponent bits and 112 significand bits (113 precision bits)
- Oct-Precision?
- Some have tried, no real traction so far
- Half-Precision?
- Yep, that's for a short (16 bit)
en.wikipedia.org/wiki/Quad_precision en.wikipedia.org/wiki/Half_precision

Administrivia...Midterm in < 2 weeks!

- Midterm 2050 VLSB Mon 2007-03-05 @ 7-10pm
- Conflicts/DSP? Email Head TA Michael, cc Dan
- How should we study for the midterm?
- Form study groups...don't prepare in isolation!
- Attend the review session (2007-03-04 @ 2pm in 10 Evans)
- Look over HW, Labs, Projects, class notes!
- Write up your handwritten 1-page study sheet
- Go over old exams - HKN office has put them online (link from 61C home page)
- Attend TA office hours and work out hard probs

Must-attend talk today @ 4pm! (in 306 Soda as usual)
 - Richard Stallman
 - Founder of the GNU Project

- Copyright vs Community in the Age of Computer Networks

- "Copyright developed in the age of the printing press, and was designed to fit with the system of centralized copying imposed by theprinting press. But the copyright system does not fit well with computer networks, and only draconian punishments can enforce it."
- "The global corporations that profit from copyright are lobbying for draconian punishments, and to increase their copyright powers, while suppressing public access to technology. But if we seriously hope to serve the only legitimate purpose of copyright--to promote progress, for the benefit of the public--then we must make changes in the other direction."

Upcoming Calendar

Week \#	Mon	Wed	Thu Lab	Fri
	Holiday	Floating Pt I	Floating Pt	Floating Pt II
$\begin{array}{r} \text { \#7 } \\ \text { Following } \\ \text { week } \end{array}$	MIPS Inst Format III (TA David)	Running Program	Running Program	Running Program
\#8 Midterm week Sun 2pm Review 10 Evans	SDS I Midterm 7pm-10pm HERE (2050 VLSB)	$\begin{gathered} \text { SDS II } \\ \text { (TA } \\ \text { Valerie) } \end{gathered}$	SDS	$\begin{aligned} & \text { SDS III } \\ & \text { (TAA } \\ & \text { Brian) } \end{aligned}$

IEEE 754 Floating Point Standard (1/3)

Single Precision (DP similar):

3130	23
S\|	Exponent

1 bit 8 bits

- Sign bit:

23 bits
1 means negative
0 means positive

- Significand:
- To pack more bits, leading 1 implicit for normalized numbers
- $1+23$ bits single, $1+52$ bits double
- always true: 0 < Significand < 1 (for normalized numbers)
- Note: 0 has no leading 1 , so reserve exponent value 0 just for number 0

IEEE 754 Floating Point Standard (2/3)

- IEEE 754 uses "biased exponent" representation.
- Designers wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares
- Wanted bigger (integer) exponent field to represent bigger numbers.
- 2's complement poses a problem (because negative numbers look bigger)
- We're going to see that the numbers are ordered EXACTLY as in sign-magnitude
- I.e., counting from binary odometer 00... 00 up to $11 . .11$ goes from 0 to +MAX to -0 to -MAX to 0

IEEE 754 Floating Point Standard (3/3)

-Called Biased Notation, where bias is number subtracted to get real number

- IEEE 754 uses bias of 127 for single prec.
- Subtract 127 from Exponent field to get actual value for exponent
- 1023 is bias for double precision
- Summary (single precision):
$3130 \quad 2322$

23 bits
$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times \mathbf{2}^{\text {(Exponent-127) }}$

- Double precision identical, except with exponent bias of 1023 (half, quad similar)
CS61C L15 Floating Point I (20)

"Father" of the Floating point standard

IEEE Standard 754 for Binary Floating-Point Arithmetic.

www.cs.berkeley.edu/~wkahan/
.../ieee754status/754story.html

Example: Converting Binary FP to Decimal

\section*{| 0 | $01101000 \mid 10101010100$ | 001101000010 |
| :--- | :--- | :--- | :--- |}

- Sign: 0 => positive
-Exponent:
- $011010 ø 0_{\text {twb }}=104_{\text {ten }}$
- Bias adjustment: $104-12 \lambda=-23$
- Significand

$$
\begin{aligned}
1 & +1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}+0 \times 2^{-4}+1 \times 2^{-5}+\ldots \\
& =1+2^{-1}+2^{-3}+2^{-5}+2^{-7}+2^{-9}+2^{-14}+2^{-15}+2^{-17}+2^{-22} \\
& =1.0+0.666115
\end{aligned}
$$

- Represents: $1.666115_{\text {ten }}{ }^{*} 2^{-23} \sim 1.986^{*} 10^{-7}$ (about 2/10,000,000)

Example: Converting Decimal to FP

-2.340625×10^{1}

1. Denormalize: - 23.40625
2. Convert integer part:

$$
23=16+(7=4+(3=2+(1)))=10111_{2}
$$

3. Convert fractional part: $.40625=.25+(.15625=.125+(.03125))=.01101_{2}$
4. Put parts together and normalize: $10111.01101=1.011101101 \times 2^{4}$
5. Convert exponent: $127+4=10000011_{2}$

Understanding the Significand (1/2)

- Method 1 (Fractions):
- In decimal: $\mathbf{0 . 3 4 0}_{10}$

$$
\begin{aligned}
& \Rightarrow 340_{10} / 1000_{10} \\
& \Rightarrow 34_{10} / 100_{10}
\end{aligned}
$$

- In binary: $0.110_{2} \Rightarrow 110_{2} / 1000_{2}=6_{10} / 8_{10}$

$$
\Rightarrow 11_{2} / 100_{2}=3_{10} / 4_{10}
$$

- Advantage: less purely numerical, more thought oriented; this method usually helps people understand the meaning of the significand better

Understanding the Significand (2/2)

- Method 2 (Place Values):

- Convert from scientific notation
- In decimal: $1.6732=\left(1 \times 10^{0}\right)+\left(6 \times 10^{-1}\right)+$ $\left(7 \times 10^{-2}\right)+\left(3 \times 10^{-3}\right)+\left(2 \times 10^{-4}\right)$
- In binary: $\quad 1.1001=\left(1 x 2^{0}\right)+\left(1 x 2^{-1}\right)+$ $\left(0 \times 2^{-2}\right)+\left(0 \times 2^{-3}\right)+\left(1 \times 2^{-4}\right)$
- Interpretation of value in each position extends beyond the decimal/binary point
- Advantage: good for quickly calculating significand value; use this method for translating FP numbers

Peer Instruction

What is the decimal equivalent of the floating pt \# above?

```
1: -1.75
2: -3.5
3: -3.75
4: -7
5: -7.5
6: -15
7: -7 * 2^129
    8: -129 * 2^7
```


"And in conclusion..."

- Floating Point lets us:
- Represent numbers containing both integer and fractional parts; makes efficient use of available bits.
- Store approximate values for very large and very small \#s.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers (Every desktop or server computer sold since ~1997 follows these conventions)
- Summary (single precision):
$3130 \quad 2322$

1 bit 8 bits 23 bits
$\cdot(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{(\text {Exponent-127) }}$

- Double precision identical, except with exponent bias of 1023 (half, quad similar)

