
CS61C L14 MIPS Instruction Representation II (1) Garcia, Spring 2007 © UCB

 Google takes on Office! ⇒
Google Apps: premium

“services” (email, instant
messaging, calendar, web
creation, word processing,

spreadsheets). Data is there.

Lecturer SOE Dan Garcia

www.cs.berkeley.edu/~ddgarcia

inst.eecs.berkeley.edu/~cs61c
UC Berkeley CS61C : Machine Structures

 Lecture 16
Floating Point II

 2007-02-23

www.nytimes.com/2007/02/22/technology/22google.html

vs

As Pink Floyd crooned:
Is anybody out there?

CS61C L14 MIPS Instruction Representation II (2) Garcia, Spring 2007 © UCB

Review
• Floating Point lets us:

• Represent numbers containing both integer and fractional
parts; makes efficient use of available bits.

• Store approximate values for very large and very small #s.

• IEEE 754 Floating Point Standard is most widely
accepted attempt to standardize interpretation of such
numbers (Every desktop or server computer sold
since ~1997 follows these conventions)
•Summary (single precision):

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Exponent tells Significand how much
(2i) to count by (…, 1/4, 1/2, 1, 2, …)

CS61C L14 MIPS Instruction Representation II (3) Garcia, Spring 2007 © UCB

“Father” of the Floating point standard

IEEE Standard
754 for Binary
Floating-Point

Arithmetic.

www.cs.berkeley.edu/~wkahan/
…/ieee754status/754story.html

Prof. Kahan
1989

ACM Turing
Award Winner!

CS61C L14 MIPS Instruction Representation II (4) Garcia, Spring 2007 © UCB

Precision and Accuracy

Precision is a count of the number bits in a
computer word used to represent a value.

Accuracy is a measure of the difference
between the actual value of a number and
its computer representation.

Don’t confuse these two terms!

High precision permits high accuracy but doesn’t
guarantee it. It is possible to have high precision
but low accuracy.
Example: float pi = 3.14;

pi will be represented using all 24 bits of the
significant (highly precise), but is only an
approximation (not accurate).

CS61C L14 MIPS Instruction Representation II (5) Garcia, Spring 2007 © UCB

Representation for ± ∞

• In FP, divide by 0 should produce ± ∞,
not overflow.
•Why?

• OK to do further computations with ∞
E.g., X/0 > Y may be a valid comparison

• Ask math majors

• IEEE 754 represents ± ∞
• Most positive exponent reserved for ∞
• Significands all zeroes

CS61C L14 MIPS Instruction Representation II (6) Garcia, Spring 2007 © UCB

Representation for 0
•Represent 0?

• exponent all zeroes
• significand all zeroes
• What about sign? Both cases valid.
+0: 0 00000000 00000000000000000000000
-0: 1 00000000 00000000000000000000000

CS61C L14 MIPS Instruction Representation II (7) Garcia, Spring 2007 © UCB

Special Numbers
•What have we defined so far?
(Single Precision)

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero ???

•Professor Kahan had clever ideas;
“Waste not, want not”

• We’ll talk about Exp=0,255 & Sig!=0 later
CS61C L14 MIPS Instruction Representation II (8) Garcia, Spring 2007 © UCB

Representation for Not a Number

•What do I get if I calculate
sqrt(-4.0)or 0/0?

• If ∞ not an error, these shouldn’t be either
• Called Not a Number (NaN)
• Exponent = 255, Significand nonzero

•Why is this useful?
• Hope NaNs help with debugging?
• They contaminate: op(NaN, X) = NaN

CS61C L14 MIPS Instruction Representation II (9) Garcia, Spring 2007 © UCB

Representation for Denorms (1/2)
•Problem: There’s a gap among
representable FP numbers around 0

• Smallest representable pos num:
a = 1.0… 2 * 2-126 = 2-126

• Second smallest representable pos num:
b = 1.000……1 2 * 2-126

= (1 + 0.00…12) * 2-126

= (1 + 2-23) * 2-126

= 2-126 + 2-149

a - 0 = 2-126

b - a = 2-149

b
a0 +-

Gaps!

Normalization
and implicit 1
is to blame!

CS61C L14 MIPS Instruction Representation II (10) Garcia, Spring 2007 © UCB

Representation for Denorms (2/2)

•Solution:
• We still haven’t used Exponent = 0,
Significand nonzero

• Denormalized number: no (implied)
leading 1, implicit exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0 +-

CS61C L14 MIPS Instruction Representation II (11) Garcia, Spring 2007 © UCB

Special Numbers Summary

•Reserve exponents, significands:
Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

CS61C L14 MIPS Instruction Representation II (12) Garcia, Spring 2007 © UCB

Administrivia
• Project 2 up on Thurs, due next next Fri

• After Midterm, just as you wanted
• There are bugs on the Green sheet!

• Check the course web page for details
• If you didn’t attend Stallman’s talk,

you need to re-assess your priorities!
• He’s talking AGAIN today (5-6:30pm)

in 306 Soda
• “The Free Software Movement and

the GNU/Linux Operating System”
 Richard Stallman launched the development of the GNU

operating system (see www.gnu.org) in 1984. GNU is free
software: everyone has the freedom to copy it and
redistribute it, as well as to make changes either large or
small. The GNU/Linux system, basically the GNU
operating system with Linux added, is used on tens of
millions of computers today.

CS61C L14 MIPS Instruction Representation II (13) Garcia, Spring 2007 © UCB

Rounding

•When we perform math on real
numbers, we have to worry about
rounding to fit the result in the
significant field.
•The FP hardware carries two extra bits
of precision, and then round to get the
proper value
•Rounding also occurs when converting:

 double to a single precision value, or
 floating point number to an integer

CS61C L14 MIPS Instruction Representation II (14) Garcia, Spring 2007 © UCB

IEEE FP Rounding Modes

• Round towards + ∞
• ALWAYS round “up”: 2.001 → 3, -2.001 → -2

• Round towards - ∞
• ALWAYS round “down”: 1.999 → 1, -1.999 → -2

• Truncate
• Just drop the last bits (round towards 0)

• Unbiased (default mode). Midway? Round to even
• Normal rounding, almost: 2.4 → 2, 2.6 → 3, 2.5 → 2, 3.5 → 4
• Round like you learned in grade school (nearest int)
• Except if the value is right on the borderline, in which case

we round to the nearest EVEN number
• Insures fairness on calculation
• This way, half the time we round up on tie, the other half time

we round down. Tends to balance out inaccuracies

Examples in decimal (but, of course, IEEE754 in binary)

CS61C L14 MIPS Instruction Representation II (15) Garcia, Spring 2007 © UCB

1: -1.75
2: -3.5
3: -3.75
4: -7
5: -7.5
6: -15
7: -7 * 2^129
8: -129 * 2^7

Peer Instruction

What is the decimal
equivalent of the floating pt #
above?

1 1000 0001 111 0000 0000 0000 0000 0000

CS61C L14 MIPS Instruction Representation II (17) Garcia, Spring 2007 © UCB

Peer Instruction

1. Converting float -> int -> float
produces same float number

2. Converting int -> float -> int produces
same int number

3. FP add is associative:
(x+y)+z = x+(y+z)

 ABC
1: FFF
2: FFT
3: FTF
4: FTT
5: TFF
6: TFT
7: TTF
8: TTT

CS61C L14 MIPS Instruction Representation II (19) Garcia, Spring 2007 © UCB

Peer Instruction

• Let f(1,2) = # of floats between 1 and 2
• Let f(2,3) = # of floats between 2 and 3

1: f(1,2) < f(2,3)
2: f(1,2) = f(2,3)
3: f(1,2) > f(2,3)

CS61C L14 MIPS Instruction Representation II (21) Garcia, Spring 2007 © UCB

“And in conclusion…”
•Reserve exponents, significands:

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

•4 rounding modes (default: unbiased)
•MIPS FL ops complicated, expensive

CS61C L14 MIPS Instruction Representation II (22) Garcia, Spring 2007 © UCB

Bonus slides

•These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.
•The slides will appear in the order they
would have in the normal presentation

CS61C L14 MIPS Instruction Representation II (23) Garcia, Spring 2007 © UCB

FP Addition

•More difficult than with integers
•Can’t just add significands
•How do we do it?

• De-normalize to match exponents
• Add significands to get resulting one
• Keep the same exponent
• Normalize (possibly changing exponent)

•Note: If signs differ, just perform a
subtract instead.

CS61C L14 MIPS Instruction Representation II (24) Garcia, Spring 2007 © UCB

MIPS Floating Point Architecture (1/4)
•MIPS has special instructions for
floating point operations:

• Single Precision:
add.s, sub.s, mul.s, div.s

• Double Precision:
add.d, sub.d, mul.d, div.d

•These instructions are far more
complicated than their integer
counterparts. They require special
hardware and usually they can take
much longer to compute.

CS61C L14 MIPS Instruction Representation II (25) Garcia, Spring 2007 © UCB

MIPS Floating Point Architecture (2/4)

•Problems:
• It’s inefficient to have different
instructions take vastly differing
amounts of time.

• Generally, a particular piece of data will
not change from FP to int, or vice versa,
within a program. So only one type of
instruction will be used on it.

• Some programs do no floating point
calculations

• It takes lots of hardware relative to
integers to do Floating Point fast

CS61C L14 MIPS Instruction Representation II (26) Garcia, Spring 2007 © UCB

MIPS Floating Point Architecture (3/4)

•1990 Solution: Make a completely
separate chip that handles only FP.
•Coprocessor 1: FP chip

• contains 32 32-bit registers: $f0, $f1, …
• most registers specified in .s and .d
instruction refer to this set

• separate load and store: lwc1 and swc1
(“load word coprocessor 1”, “store …”)

• Double Precision: by convention,
even/odd pair contain one DP FP number:
$f0/$f1, $f2/$f3, … , $f30/$f31

CS61C L14 MIPS Instruction Representation II (27) Garcia, Spring 2007 © UCB

MIPS Floating Point Architecture (4/4)
•1990 Computer actually contains
multiple separate chips:

• Processor: handles all the normal stuff
• Coprocessor 1: handles FP and only FP;
• more coprocessors?… Yes, later
• Today, cheap chips may leave out FP HW

• Instructions to move data between
main processor and coprocessors:
•mfc0, mtc0, mfc1, mtc1, etc.

•Appendix pages A-70 to A-74 contain
many, many more FP operations.

CS61C L14 MIPS Instruction Representation II (28) Garcia, Spring 2007 © UCB

Example: Representing 1/3 in MIPS
•1/3

= 0.33333…10

= 0.25 + 0.0625 + 0.015625 + 0.00390625 + …
= 1/4 + 1/16 + 1/64 + 1/256 + …
= 2-2 + 2-4 + 2-6 + 2-8 + …
= 0.0101010101… 2 * 20

= 1.0101010101… 2 * 2-2

• Sign: 0
• Exponent = -2 + 127 = 125 = 01111101
• Significand = 0101010101…
0 0111 1101 0101 0101 0101 0101 0101 010

CS61C L14 MIPS Instruction Representation II (29) Garcia, Spring 2007 © UCB

Casting floats to ints and vice versa

(int) floating_point_expression
Coerces and converts it to the nearest
integer (C uses truncation)
i = (int) (3.14159 * f);

(float) integer_expression
converts integer to nearest floating point
f = f + (float) i;

CS61C L14 MIPS Instruction Representation II (30) Garcia, Spring 2007 © UCB

int → float → int

•Will not always print “true”
•Most large values of integers don’t
have exact floating point
representations!
•What about double?

if (i == (int)((float) i)) {

 printf(“true”);

}

CS61C L14 MIPS Instruction Representation II (31) Garcia, Spring 2007 © UCB

float → int → float

•Will not always print “true”
•Small floating point numbers (<1)
don’t have integer representations
•For other numbers, rounding errors

if (f == (float)((int) f)) {

 printf(“true”);

}

CS61C L14 MIPS Instruction Representation II (32) Garcia, Spring 2007 © UCB

Floating Point Fallacy
•FP add associative: FALSE!

• x = – 1.5 x 1038, y = 1.5 x 1038, and z = 1.0
• x + (y + z) = –1.5x1038 + (1.5x1038 + 1.0)

= –1.5x1038 + (1.5x1038) = 0.0
• (x + y) + z = (–1.5x1038 + 1.5x1038) + 1.0

= (0.0) + 1.0 = 1.0

•Therefore, Floating Point add is not
associative!

• Why? FP result approximates real result!
• This example: 1.5 x 1038 is so much larger
than 1.0 that 1.5 x 1038 + 1.0 in floating point
representation is still 1.5 x 1038

