UC Berkeley CS61C : Machine Structures

Lecture 16
Floating Point Il

2007-02-23

Lecturer SOE Dan Garcia

As Pink Floyd crooned:
Is anybody out there?

www.cs.berkeley.edu/~ddgarcia
Google takes on Office! =

Google Apps: premium GO&)S[Q
“services” (email, instant vs
messaging, calendar, web

creation, word processing,
- ..~ spreadsheets). Data is there.
% www.nytimes.com/2007/02/22/technology/22google.html

CSB1C L14 MIPS Instruction [0 Garcia, Spring 2007 @ Ul

“Father” of the Floating point standard

IEEE Standard
754 for Binary
Floating-Point

Arithmetic.

1989 %

ACM Turin .
Award Winngr! Prof. Kahan

www.cs.berkeley.edu/~wkahan/
../ieee754status/754story.html

Garcia, Spring 2007 © UCB|

Representation for + «

«In FP, divide by 0 should produce = ,
not overflow.

«Why?

» OK to do further computations with o«
E.g., X/0 > Y may be a valid comparison

» Ask math majors

*IEEE 754 represents x «
» Most positive exponent reserved for o
+ Significands all zeroes

Q CSB1C L14 MIPS Instruction 11(5)

Garcla, Spring 2007 ® UCB|

Review Exponent tells Significand how much
(2) to count by (..., 1/4,1/2,1, 2, ...)

* Floating Point lets us:

- Represent numbers containing both integer and fractional
parts; makes efficient use of available bits.

- Store approximate values for very large and very small #s.
« IEEE 754 Floating Point Standard is most widely
accepted attempt to standardize interpretation of such

numbers (Every desktop or server computer sold
since ~1997 follows these conventions)

*Summary (single precision):

3130 2322 0
[S| Exponent | Significand |
1 bit 8 bits 23 bits

«(-1)8 x (1 + Significand) x 2(Exponent-127)

* Double precision identical, except with
exponent bias of 1023 (half, quad similar)

CSB1C L14 MIPS Instruction 1(2)

Garcla, Spring 2007 ® UCB|

Precision and Accuracy

Don'’t confuse these two terms!

Precision is a count of the number bits in a
computer word used to represent a value.

Accuracy is a measure of the difference
between the actual value of a number and
its computer representation.

High precision permits high accuracy but doesn’t
guarantee it. It is possible to have high precision
but low accuracy.
Example: float pi = 3.14;
pi will be represented using all 24 bits of the
significant (highly precise), but is only an
approximation (not accurate).

Garcia, Spring 2007 © UCB|

Representation for 0

*Represent 0?
» exponent all zeroes
- significand all zeroes

* What about sign? Both cases valid.
+0: 0 00000000 00000000000000000000000
-0: 1 00000000 00000000000000000000000

Q CSB1C L14 MIPS Instruction 11(6)

Garcla, Spring 2007 ® UCB|

Special Numbers

*What have we defined so far?
(Single Precision)

Exponent Significand Object

1] 1] 1]

0 nonzero 27??

1-254 anything +/- fl. pt. #
255 1] +/- o0

255 nonzero 2?2?

*Professor Kahan had clever ideas;
“Waste not, want not”

Q - We’ll talk about Exp=0,255 & Sig!=0 later

CSB1C L14 MIPS Instruction @) Garcla, Spring 2007 © UCB|

Representation for Denorms (1/2)
*Problem: There’s a gap among
representable FP numbers around 0
- Smallest representable pos num:
a=1.0...,*2126 =212
- Second smallest representable pos num:

b =1.000......1 , * 2126
=(1+0.00...1,) * 2126

(1+22) 226

2-126 4 D-149

a-0=21%
b-a=2" Gaps!

b
- 00 4%@@%—» + 00
@& o
st L1 s nstrction o

Normalization
and implicit 1
is to blame!

Garcia, Spring 2007 © UCB|

Special Numbers Summary

*Reserve exponents, significands:
Exponent Significand Object
0 1]

0

0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/-

255 nonzero NaN

Representation for Not a Number

«What do | get if | calculate
sqrt(-4.0)or 0/07?

« If © not an error, these shouldn’t be either
+ Called Not a Number (NaN)
+ Exponent = 255, Significand nonzero
* Why is this useful?
* Hope NaNs help with debugging?
» They contaminate: op(NaN, X) = NaN

Q CSB1C L14 MIPS Instruction 11(8) Garcla, Spring 2007 © UCB|

Representation for Denorms (2/2)

*Solution:

» We still haven’t used Exponent = 0,
Significand nonzero

» Denormalized number: no (implied)
leading 1, implicit exponent = -126.

* Smallest representable pos num:
a= 2149

- Second smallest representable pos num:

b =2-148
'&4—0—0—0—%—%—»‘01%—0—0—0—» + OO @

Garcia, Spring 2007 © UCB|

Q CSB1C L14 MIPS Instruction

11 Garcla, Spring 2007 © UCB|

Administrivia

* Project 2 up on Thurs, due next next Fri
+ After Midterm, just as you wanted

* There are bugs on the Green sheet!
+ Check the course web page for details
« If you didn’t attend Stallman’s talk,
you need to re-assess your priorities!

* He’s talking AGAIN today (5-6:30pm)
in 306 Soda
* “The Free Software Movement and
the GNU/Linux Operating System”
> <5\" Richard Stallman launched the development of the GNU
AJ] operating system (see www.gnu.org) in 1984. GNU is free
* software: everyone has the freedom to copy it and

redistribute it, as well as to make changes either large or
small. The GNU/Linux system, basically the GNU

millions of computers today.

CSB1C L14 MIPS Instruction 11(12) Garcla, Spring 2007 © UCB|

@‘ i operating system with Linux added, is used on tens of

Rounding

*When we perform math on real
numbers, we have to worry about
rounding to fit the result in the
significant field.

*The FP hardware carries two extra bits
of precision, and then round to get the
proper value

*Rounding also occurs when converting:

double to a single precision value, or
floating point number to an integer

@ CSB1C L14 MIPS Instruction 11(13)

Garcla, Spring 2007 ® UCB|

IEEE FP Rounding Modes

Examples in decimal (but, of course, IEEE754 in binary)

* Round towards + %
+ ALWAYS round “up”: 2.001 — 3, -2.001 — -2

* Round towards - ®
+ ALWAYS round “down”: 1.999 — 1,-1.999 — -2

* Truncate
« Just drop the last bits (round towards 0)

* Unbiased (default mode). Midway? Round to even
» Normal rounding, almost: 2.4 — 2,26 - 3,25 — 2,35— 4
* Round like you learned in grade school (nearest int)

- Except if the value is right on the borderline, in which case
we round to the nearest EVEN number

« Insures fairness on calculation

we round down. Tends to balance out inaccuracies

Peer Instruction

(1] 1000 0001 [111 0000 0000 0000 0000 0000 |

What is the decimal 3 3
equivalent of the floating pt# | 3; 37°
above? 5: 7.5
7
8

: =15

D=7 % 24129
© -120 * 277

Garcia, Spring 2007 © UCB|

Z + This way, half the time we round up on tie, the other half time

CSB1C L14 MIPS Instruction 11(14) Garcla, Spring 2007 ® UCB|

Peer Instruction

1. Converting float -> int -> float ABC
produces same £loat humber

2. Converting int -> float > int produces
same int number

3. FP add is associative:
(x+y)+z = x+(y+z)

odouTdWN
H
]
o]

Garcia, Spring 2007 © UCB|

Peer Instruction

e Let £(1,2) =# of floats between 1 and 2
e Let £(2,3) = # of floats between 2 and 3

1: £(1,2) < £(2,3)
2: £(1,2) = £(2,3)
3: £(1,2) > £(2,3)

@ CSB1C L14 MIPS Instruction 11(19)

Garcla, Spring 2007 ® UCB|

“And in conclusion...”

*Reserve exponents, significands:
Exponent Significand Object
0 0

0

0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ©

255 nonzero NaN

*4 rounding modes (default: unbiased)
*MIPS FL ops complicated, expensive

@ CSB1C L14 MIPS Instruction 1(21)

Garcla, Spring 2007 ® UCB|

Bonus slides

*These are extra slides that used to be
included in lecture notes, but have
been moved to this, the “bonus” area
to serve as a supplement.

*The slides will appear in the order they
would have in the normal presentation

gonus

11(22) cia, Spring 2007 © UCB|

MIPS Floating Point Architecture (1/4)

*MIPS has special instructions for
floating point operations:

- Single Precision:
add.s, sub.s, mul.s, div.s

* Double Precision:
add.d, sub.d, mul.d, div.d

*These instructions are far more
complicated than their integer
counterparts. They require special
hardware and usually they can take
much longer to compute.

Garcia, Spring 2007 © UCB|

MIPS Floating Point Architecture (3/4)

+1990 Solution: Make a completel
separate chip that handles only FP.
*Coprocessor 1: FP chip
- contains 32 32-bit registers: $£0, $£f1, ...

* most registers specified in .s and .d
instruction refer to this set

- separate load and store: 1wcl and swcl
(“load word coprocessor 17, “store ...”)

* Double Precision: by convention,
even/odd pair contain one DP FP number:
$EO/SE1, $E£2/$£3, ..., $E30/$£31

CSB1C L14 MIPS Instruction 11 (26) Garcla, Spring 2007 © UCB|

FP Addition

*More difficult than with integers
«Can’t just add significands

*How do we do it?
* De-normalize to match exponents
+ Add significands to get resulting one
+ Keep the same exponent
* Normalize (possibly changing exponent)

*Note: If signs differ, just perform a
subtract instead.

Q CSB1C L14 MIPS Instruction 11(23) Garci

la, Spring 2007 © UCB)|

MIPS Floating Point Architecture (2/4)

*Problems:

- It’s inefficient to have different
instructions take vastly differing
amounts of time.

» Generally, a particular piece of data will
not change from FP to int, or vice versa,
within a program. So only one type of
instruction will be used on it.

- Some programs do no floating point
calculations

- It takes lots of hardware relative to
integers to do Floating Point fast

CSB1C L14 MIPS Instruction 11 (25) Garcia, Spring 2007 © UCB|

MIPS Floating Point Architecture (4/4)
+1990 Computer actually contains
multiple separate chips:
* Processor: handles all the normal stuff
+ Coprocessor 1: handles FP and only FP;
* more coprocessors?... Yes, later
* Today, cheap chips may leave out FP HW
*Instructions to move data between
main processor and coprocessors:
emfc0, mtcO, mfcl, mtcl, etc.
* Appendix pages A-70 to A-74 contain
many, many more FP operations.

CSB1C L14 MIPS Instruction 1 (27) Garci

la, Spring 2007 © UCB|

Example: Representing 1/3 in MIPS
*1/3

=0.33333...,,
=0.25 + 0.0625 + 0.015625 + 0.00390625 + ...
=1/4 + 116 + 1/64 + 1/256 + ...
=22 424 +26 4284 .,
=0.0101010101... ,* 20
=1.0101010101... , * 22
+Sign: 0
* Exponent =-2 + 127 =125 = 01111101
+ Significand = 0101010101...

int — float — int

if (i == (int) ((float) i)) {
printf (“true”) ;

}

* Will not always print “true”

*Most large values of integers don’t
have exact floating point
representations!

*What about double?

Garcia, Spring 2007 © UCB|

Floating Point Fallacy

*FP add associative: FALSE!
+x=-15x10%8,y=1.5x10%,andz=1.0

*x+(y+2z) =-1.5x10% +(1.5x10%8 + 1.0)
=-1.5x103%8 + (1.5x103%8) = 0.0

“(x+y)+z =(-1.5x10% + 1.5x103%) + 1.0
=(0.0)+1.0=1.0
» Therefore, Floating Point add is not
associative!
* Why? FP result approximates real result!

+ This example: 1.5 x 103 is so much larger
than 1.0 that 1.5 x 1038 + 1.0 in floating point
@ representation is still 1.5 x 1038

CSB1C L14 MIPS Instruction 1(32) Garcla, Spring 2007 © UCB|

Casting floats to ints and vice versa

(int) floating point_expression

Coerces and converts it to the nearest
integer (C uses truncation)

i = (int) (3.14159 * f);

(float) integer expression
converts integer to nearest floating point
f =f + (float) i;

Q CSB1C L14 MIPS Instruction

11 (29) Garcla, Spring 2007 © UCB|

float — int — float

if (£ == (float) ((int) f£f)) {
printf (“true”) ;

}

* Will not always print “true”

*Small floating point numbers (<1)
don’t have integer representations

*For other numbers, rounding errors

Garcia, Spring 2007 © UCB|

